More info for the terms: burl, hardwood, litter, natural, root crown, series
Pacific madrone regenerates sexually and asexually [37,69]; however, it primarily reproduces vegetatively by sprouting, not by seed [82].
McDonald and Tappeiner [90] describe 3 reproductive modes relative to Pacific madrone: seedlings, seedling-sprouts, and root-crown sprouts. Seedlings originate from seed and their tops have never died back to the ground. Seedling-sprouts also originate from seed, but their tops are less than 2 inches (5.1 cm) in diameter at the ground line, and they have died back and sprouted at least once. The chances of Pacific madrone becoming a seedling-sprout are low, and seedling-sprouts rarely occur in shade environments. Root-crown sprouts originate from burls on top-killed trees more than 2 inches (5.1 cm) in diameter at ground line [90].
Pollination: Pacific madrone is pollinated by bees [13,18,51]. Hummingbirds have been observed feeding on Pacific madrone blossoms and may also pollinate the flowers [51].
Breeding system: Pacific madrone has low genetic diversity in British Columbia and is known for multilocus outcrossing [18].
Seed production: The age at which Pacific madrone seedlings first produce fruit is not recorded in the literature. The minimum seed-bearing age for root crown sprouts is 4 years, but seed production occurs more commonly at 8 years [91]. On the Challenge Experimental Forest, California, initial flower production occurred at age 4 on a "vigorous sprout", resulting in 62 berries. On another sprout clump, the tallest and most vigorous sprout produced 11 flower clusters at age 8 but produced few berries. Seed count ranged from 2 to 37 seeds/berry, with an average of 20 seeds/berry [82].
A 24-year study estimating seed crops of conifer and hardwood species on a Pacific ponderosa pine site on the Challenge Experimental Forest estimated that the average number of berries on 3 Pacific madrone trees was 49,000/tree, with a range of 13,000 to 108,000/tree during a "very light" seed year. The average number of seeds/berry was 20. Over the 24-year period, Pacific madrone produced 12 seed crops. Two were categorized as "medium-heavy", and 10 were categorized as "very light" [87].
Seed dispersal: Pacific madrone seeds are dispersed largely by birds, but also by mule deer, rodents, and gravity [13,18,71,82,87].
On the Challenge Experimental Forest, berries are disseminated by a host of consumers, particularly the mourning dove and band-tailed pigeon [87].
Seed banking: McDonald [82] states that Pacific madrone has long-term seed dormancy and viability and stays viable for "scores" of years in the soil. When conditions are right (i.e., cool temperatures and adequate moisture), after-ripening is induced and dormancy is broken [82].
Germination: A cold stratification period is critical for germination of Pacific madrone seeds [58,82,91], because the seeds have strong embryo dormancy [91]. McDonald [82] identified optimal stratification requirements for Pacific madrone seeds through a series of tests including cold, light, heat, acid, and stratification. Seeds failed to germinate after stratification at freezing temperatures for 24 days, while a 24-day stratification at above-freezing temperatures (36 ± 2 °F (2.2 ± 1.1 °C)) yielded 43% germination. Light was apparently unnecessary for germination of Pacific madrone seeds. Percent sound Pacific madrone seeds that germinated after heat, acid (sulphuric acid), and stratification treatments is provided in the table below. Stratification alone and acid and stratification significantly enhanced germination over those treatments using heat (P=0.05). No stratification caused poor germination. Mold was a constant problem in all treatments and in most cases became worse with longer stratification and germination periods [82].
Percent of sound Pacific madrone seeds that germinated after 4 stratification treatments and 5 time periods [82]
Stratification period (days)
Treatment Stratification Acid & stratification Heat & stratification Heat, acid, & stratification 0 not applicable 1 1 0 30 85 77 19 24 60 94 96 65 64 90 94 94 62 60 120 96 96 2 67
In a laboratory study on germination, 2 Pacific madrone populations showed only slight differences in length of time required for stratification. Maleike and Hummel [79] collected seeds from a high-elevation and a sea-level source. The seeds were stratified at 39 °F (4 °C) for 0, 20, 40, 60, and 80 days. Percent germination increased with increasing time in cold stratification up to 60 days. After 60 days there was a decline in percent germination with both seed sources. Maximum germination for the sea-level seeds was reached at both 40 and 60 days. The seeds from the high-elevation seed source reached highest germination at 60 days [79].
Germination of seeds not separated from the berry was found, in a laboratory study, to be poor and intermittent. Berries were stratified in a refrigerator for 45 days and underwent subsequent germination tests. Seedlings did not readily disengage from the berry and seed coat, and there was heavy mortality from fungi. In field trials on the Challenge Experimental Forest, if the berries and seed survived long enough to germinate (i.e., not eaten by birds, rodents, etc.), many seedlings were killed by damping-off and root-rotting fungi [82]. Fungi appear to be a major problem in natural and artificial regeneration of Pacific madrone.
Seed germination is discouraged by low light intensities under a closed canopy; therefore, Pacific madrone may not reproduce satisfactorily under dense forest conditions [26].
Seedling establishment/growth: Disturbance favors seedling establishment of Pacific madrone [82,92,132]. Survival rates of artificial Pacific madrone regeneration were observed on 3 types of Douglas-fir-ponderosa pine stands in the Siskiyou Mountains of southwestern Oregon. The 3 stands were differentiated as: clearcut, 5 to 14 years old; a young conifer-hardwood stand, 50 to 80 years old; and an old conifer-hardwood stand, 150 to 220+ years old. Seeds were sown in December at each location. One lot was sown on bare mineral soil protected by a cage, and 1 lot each on unprotected plots on undisturbed forest floor and bare mineral soil. Germinants began to emerge in early March, with more than 90% of the seedlings appearing within 1 month. Fewer seedlings emerged on unprotected plots than on protected plots due to predation of seed. Seedlings began to die immediately after emergence. Average survival at the end of the 1st summer was significantly lower (P=0.05) in old stands (5%-14%) and young stands (8%-12%) than in clearcuts (32%-34%). On most plots all seedlings had died within 1 year, with 1st-year mortality ranging between 90% and 100%. Causes of seedling mortality, in order of importance, were drought, litterfall covering small seedlings during fall months, damping-off fungi, invertebrate browsers (mainly slugs) in both young and old stands, and spring and fall frost, common in the clearcuts. At the end of the 2nd year, survival ranged from less than 1% to 3% in the young and old stands and after 2 and 3 years in the clearcuts, survival ranged from 5% to 12%. In this study, success of seedlings was dependent on disturbance to the forest floor and reduced litterfall, as indicated by the higher survival in clearcut stands [132]. McDonald [82] stated that the bare mineral soil created by some silvicultural methods is conducive to seedling survival and noted little natural regeneration of Pacific madrone in an undisturbed pure hardwood stand.
Most Pacific madrone seedlings are found in partial shade on bare mineral soil [133]. On recently logged redwood stands in northern California, Pacific madrone established in open environments on relatively hot, dry sites with thin, rocky soil [142]. Seedling establishment is minor in stands with low light, heavy litterfall, damping-off fungi, and browsing invertebrates on the forest floor, all of which kill new seedlings [82,92,105,133,142]. High soil and air temperatures and frost heaving also kill Pacific madrone germinants on exposed microsites in clearcuts. Many Pacific madrone seedlings begin development in heavy organic litter in shade. The heavy organic layer inhibits the moisture-seeking root from penetrating to mineral soil, causing high mortality from fungi and drought [82].
Early growth of Pacific madrone seedlings is slow. In the Santa Cruz Mountains, California, length of 6-month-old seedlings growing in the sun was 1.6 inches (4 cm) for shoots and 4 inches (10 cm) for roots. Seedlings growing in a shady environment had shoots that were 1 inch (3 cm) and roots measuring 1.6 inches (4 cm). Two-year-old seedlings in the Sierra Nevada averaged 3.5 inches (9 cm) tall [82,92].
Vegetative regeneration: Pacific madrone sprouts from the burl after damage by cutting, fire, or disease [36,59,66,89,131]. It is unknown how early the burl develops on seedlings [90].