More info for the terms: competition, cover, density, fire management, frequency, fresh, invasive species, litter, natural, restoration, root crown, succession
Impacts: Houndstongue can establish rapidly and form dense monocultures in disturbed habitats. Populations of houndstongue displace native plant species and hinder the re-establishment of valuable range species, thereby decreasing availability of forage to wildlife and livestock [80]. It is most detrimental on rangelands and hayfields because of its toxicity to livestock, although, in most cases, the fresh plant is considered unpalatable by livestock and is generally avoided (see Importance to Livestock and Wildlife) [50,99].
The barbed seeds of houndstongue readily attach to wool and fur. This can create marketing problems and require extra time and money for removal, thus reducing the value of livestock. The seeds can also attach to the eyelashes of animals and cause eye damage, and the foliage may cause dermatitis [50,99].
Control: Houndstongue can be controlled by killing plants and/or preventing seed production. Long-term control of houndstongue requires an integrated management approach [50].
Prevention: Prevention is the most effective method for managing invasive species, including houndstongue [50,88]. Preventing or dramatically reducing seed production and dispersal, detecting and eradicating weed introductions early, containing current infestations, minimizing soil disturbances, establishing competitive grasses, and managing grazing properly will all help decrease the spread of infestations.
Cleaning livestock when they are moved from an infested area to an uninfested area is critical to prevent seed spread [23]. Houndstongue seeds also readily adhere to shoes and clothing and need to be removed and carefully disposed of (burned or bagged). It is important to clean mowers, vehicles, and tillage equipment after operating in an infested area. When seeding is necessary, use clean, certified weed-free seed and mulch to ensure that these or other weeds are not being sown.
Place a priority on controlling small infestations so they do not expand. Conducting aggressive monitoring and treatment several times each year can help with early detection and containment of infestations when they are small. Monitoring efforts are best concentrated on the most disturbed areas in a site, particularly along roadsides, parking lots, fencelines, and waterways. When an infestation is found, the location can be recorded and the surrounding area surveyed to determine the size and extent of the infestation, so these sites can be revisited on follow-up surveys. For more on monitoring see Johnson [47].
Historic overgrazing by livestock and native ungulates encourages invasion by houndstongue [80]. In areas susceptible to invasion, proper livestock grazing should include altering timing, frequency and level of defoliation to allow a full recovery of desirable grass species. This grazing regime promotes litter accumulation to allow proper nutrient cycling and enhances vigor of desirable grasses which limits invasion by rangeland weeds [50]. For more information on grazing management for weed control see Olson [71].
Weed prevention and control can be incorporated into all types of management plans, including logging and site preparation, management of grazing allotments, recreation management, research projects, road building and maintenance, and fire management. See the "Guide to noxious weed prevention practices" [95] for specific guidelines in preventing the spread of weed seeds and propagules under different management conditions.
Integrated management: The goal of any management plan should be to not only control invasive plants, but also to improve the affected community by maximizing forage quality and quantity and/or preserving ecosystem integrity, and preventing reinvasion or invasion by other invasive species. This must be done in a way that is complementary to the ecology and economics of the site [28,45]. Effective long-term control requires that invasive plants be removed and replaced by more desirable and weed-resistant plant communities [45]. Once the desired plant community has been determined, an integrated weed management strategy can be developed to direct succession toward that plant community by identifying key mechanisms and processes directing plant community dynamics (site availability, species availability, and species performance) and predicting plant community response to control measures [87]. This requires a long-term integrated management plan.
Most often, a single method is not effective for controlling an invasive plant, but there are many possible combinations of methods that can achieve the desired objectives. Methods selected for removal or control of houndstongue on a specific site will be determined by land use objectives, desired plant community, extent and nature of the infestation(s), environmental factors (nontarget vegetation, soil types, climatic conditions, important water resources), economics, and effectiveness and limitations of available control techniques [78].
Managers are encouraged to use combinations of control techniques in a manner that is appropriate to the site objectives, desired plant community, available resources, and timing of application. For information on integrated weed management without herbicides, see the Bio-Integral Resource Center (BIRC) website.
Physical/mechanical: Tillage, hoeing, and hand-pulling may provide effective control of houndstongue, providing these operations are done before the reproductive growth stages to prevent seed production. Mechanical methods may not be practical on rangeland and natural areas, but could be useful in improved pastures or roadsides.
First-year houndstongue plants are difficult to control by aboveground cutting, as the prostrate rosette resists mowing and grazing [99], and nutrient reserves of the taproot acquired during the 1st year are sufficient for normal seed production the following year, even if the plants are completely defoliated early in the spring [11,98]. Furthermore, defoliation at the rosette stage may cause the plant to delay flowering for a year and thus result in a larger plant with a greater seed output [102]. Mowing or clipping 2nd year plants can reduce seed production in houndstongue provided that it is done before seeds are formed and that defoliation is severe enough to prevent regrowth and subsequent flowering [80]. Clipping 2nd year houndstongue plants 0 to 3 inches (0-7 cm) above ground in late June reduced but did not eliminate seed production in houndstongue (Dickerson and Fay 1982, as cited by [26,98]). Sixty percent of cut plants failed to regrow, and seed production of the plants that resumed growth declined to about 25 seeds per plant compared to 364 seeds per plant in the unclipped controls. Boorman and Fuller [11], on the other hand, found that removing the leaves from 2nd year plants had little effect on seed number or seed weight. Additionally, if the flowering stalk is cut off or if flower buds are removed, axillary buds lower on the stem may be activated and develop into cymes; or the plant may respond by forming vegetative side-rosettes from the axils of old leaf-bases [26]. Response of houndstongue after serious defoliation depends on the vigor of plants and the fertility of the site, especially nitrogen availability. Plants with low growth rates respond quite poorly to defoliation, while vigorous plants may recover and set seed [102].
Plowing is said to control houndstongue [99]. However, tillage is not usually appropriate in wildlands and rangelands since it can damage important desirable species, increase erosion, alter soil structure, and expose the soil for rapid reinfestation by houndstongue and other invasive species [62]. Cutting the root crown of either young rosettes or older houndstongue plants (before seed set) 1 to 2 inches (2.5-5 cm) below the soil surface in autumn or early spring and removing top-growth can be effective in controlling small infestations [50,99]. Hand-pulling of houndstongue on the Dunstan Homestead in northeastern Oregon reduced houndstongue populations by 85% [80]. For very large infestations, it may be difficult to get enough labor for cutting or hand-pulling. The Salmon River Restoration Council (SRRC) provides an example of watershed-scale weed control using primarily mechanical control methods and volunteer labor.
Fire: See Fire Management Considerations.
Biological: Biological control of invasive species has a long history; many important considerations need to be made before implementation of a biological control program. The reader is referred to other sources [78,108] and the Weed Control Methods Handbook [94] for background information on biological control. Additionally, Cornell University and NAPIS websites offer information on biological control.
As of 1999, 5 biological control agents were being screened for their potential use on houndstongue. These include a root weevil (Mogulones cruciger), a seed weevil (M. borreginis), a stem weevil (M. trisignatus), a root beetle (Longitarsus quadriguttatus), and a root fly (Cheilosia pasquorum) [50]. Recent research on the host specificity of Mogulones cruciger indicates that this agent can complete full development on several plant species within closely related genera in the Boraginaceae, but prefers houndstongue as a host. This is a matter of concern since at least one species in the genus Cryptantha (C. crassipes) is listed as endangered in the U.S., and 6 of the 12 Cryptantha species tested supported full development of the root weevil (C. crassipes was not tested) [22]. As of the time of this writing, no further information is available regarding the status of the other biocontrol agents. Erysiphe cynoglossi is a commonly encountered pathogen on houndstongue in western North America that is being studied for its impact on vegetative plant growth and reproduction [21].
Chemical: Herbicides are effective in gaining initial control of a new invasion or a severe infestation, but are rarely a complete or long-term solution to weed management [15]. Herbicides are more effective on large infestations when incorporated into long-term management plans that include replacement of weeds with desirable species, careful land use management, and prevention of new infestations. Control with herbicides is temporary, as it does not change those conditions that allow infestations to occur [110]. See the Weed Control Methods Handbook for considerations on the use of herbicides in natural areas and detailed information on specific chemicals.
Picloram, dicamba, chlorsulfuron, metsulfuron and 2,4-D amine can kill houndstongue plants. Repeated applications may be necessary for several years to maintain adequate control [50,59,99]. Herbicide choice and rates are influenced by growth stage, stand density, and environmental conditions (e.g. drought or cold temperatures). Check with state or county weed specialists for appropriate local use rates and timing.
Cultural: No matter what method is used to kill weeds, re-establishment of competitive, desirable plant cover is imperative for long-term control. Fertilization and reseeding with competitive, adapted species is often necessary in areas without a residual understory of desirable plants [78].
Houndstongue seedlings have a comparatively low growth rate and are not strongly competitive. Interspecific competition severely reduces the dry weight of 1st and 2nd year houndstongue plants [99]. Generalist herbivores play a positive role in the population dynamics of houndstongue by reducing competition from grasses in coastal dunes in the Netherlands [20,74]. Similarly, in exclosure studies in northeastern Oregon, percent canopy cover houndstongue increased over a 30-year period under grazing pressure from both cattle and wildlife [81]. These studies suggest, therefore, that planting and maintaining competitive species can effectively control houndstongue, although more research is needed.