More info for the terms: allelopathy, basal area, competition, cover, density, fire management, forb, forbs, frequency, graminoid, heath, invasive species, litter, mesic, natural, nonnative species, prescribed fire, rangeland condition, shrub, shrubs
Impacts: Leafy spurge is considered a "serious", "very aggressive", "most troublesome", and "highly invasive" nonnative species in the northern half of the United States [60,90,98,218], which has established and spread in stable, undisturbed native plant communities [43,131]. In Minnesota's Pipestone National Monument, leafy spurge is the highest control priority because delayed control results in the great costs [180]. In Massachusetts, leafy spurge has spread into native or minimally managed plant communities [131]. At the coastal and southern fringes of its US distribution (see General Distribution), leafy spurge is less aggressive and less problematic for land managers. In Virginia, leafy spurge is "occasionally invasive", typically establishes only in "severely" disturbed areas, and spreads slowly or not at all from disturbed sites [225].
Leafy spurge's high reproductive rates, potential for rapid dispersal, and already large, established populations in natural areas make it a severe threat to native plant communities (Hiebert and Stubbendieck 1993 cited in [180]). As of 2000, leafy spurge was among the 10 most frequently listed noxious weeds in the contiguous United States and Canada's southern provinces [204]. As of 2005, leafy spurge ranked 6th in a list of 81 nonnative, invasive species seriously impacting natural habitats of Canada [34]. In a survey of Wisconsin's authorities on local flora, leafy spurge ranked 12th out of 66 nonnative invasive plants evaluated for their impacts on native plant communities [183].
Observations, surveys, and studies indicate that leafy spurge establishment, spread, and persistence can negatively impact human health, native and rare plant species abundance, ranching and farming economies, wildlife abundance and land use patterns, and competition for pollinators. One study suggests that leafy spurge's US distribution may contract with future climate changes, but another study suggests that leafy spurge may become more invasive as CO2 levels reach future predicted levels.
Impacts to human health: A review reports that leafy spurge contains toxins, likely within its milky sap, that can cause internal and external irritations. Swelling and burning of the mouth and throat and abdominal pain have been reported after ingestion of leafy spurge. Blisters and skin inflammation can occur after handling leafy spurge [117]. Severe dermatitis has been reported for some people [14]. After researchers identified tumor-promoting properties in leafy spurge, some have suggested a dietary cancer risk in eating livestock that graze leafy spurge (review by [117]). In the reviewed literature, no other studies evaluated this risk.
Impacts on associated vegetation: Rapid vegetative spread (see Rates of vegetative spread), dense stand production, and thick litter accumulations allow leafy spurge to replace rare and/or native plant species. In leafy spurge stands, densities of 1,000 stems/yd² are common. Researchers suggest that stands of that density could easily crowd out associated native vegetation [20]. The thick litter layer produced in dense leafy spurge stands can inhibit establishment of light-demanding species [231]. Other studies suggest that leafy spurge allelopathy or effects on soils and soil biota may also limit associated vegetation.
Studies indicate that leafy spurge threatens sensitive species, replaces native species, and negatively impacts species richness. In tallgrass prairie swales in North Dakota's Sheyenne National Grassland, leafy spurge often dominates and is "continuing to expand" in habitats that support the federally threatened Great Plains white fringed orchid (Platanthera praeclara). Future spread and efforts to control leafy spurge are considered serious threats to the orchid [202,203]. When the composition of remnant mixed-grass prairie and leafy spurge-dominated sites were compared in Manitoba, Canada, cover of common native species and total species richness were significantly greater (P<0.05) in prairie than leafy spurge-dominated vegetation. Areas beyond leafy spurge patches supported 7 to 11 native species, whereas areas where leafy spurge was abundant supported only 4 native species [13]. In 7 of 11 leafy spurge-infested plant associations in North Dakota's Theodore Roosevelt National Park, species richness was 51% lower in infested than uninfested areas. Species richness losses were greatest in silver sagebrush, creeping juniper, and prairie sandreed associations (P<0.05). While 77% to 93% of the species occurring in infested stands also occurred in uninfested stands, just 50% to 79% of the species in uninfested stands also occurred in infested stands. Across all communities, 93 species were restricted to uninfested stands. Of these, 53% were forbs, 25% were graminoids, and 21% were shrubs or subshrubs [28].
Allelopathy: Allelopathic effects could play a part in leafy spurge's impact on neighboring vegetation, but field studies documenting allelopathic influence are lacking. In Fort Collins, Colorado, high densities and frequencies of quackgrass (Elymus repens) and annual ragweed (Ambrosia artemisiifolia) occurred near the perimeter but were absent near the center of a leafy spurge patch. A follow-up greenhouse study found that growth of tomato (Lycopersicon esculentum) and hairy crabgrass (Digitaria sanguinalis) were greater in soils without leafy spurge litter than in soils with leafy spurge litter. Researchers suggested that dead or decaying leafy spurge plant material may have allelopathic properties [208]. In other laboratory studies, germination of common wheat (Triticum vulgare), crested wheatgrass, smooth brome, and wild mustard (Sinapis arvensis subsp. arvensis) watered with extracts of leafy spurge leaves or stems was significantly lower than that of controls (P<0.05) [200]. Growth of mouseear cress (Arabidopsis thaliana) seedlings treated with leafy spurge root exudate was lower than control seedlings. Researchers identified leafy spurge root compounds capable of causing necrosis or limiting root growth [173]. However, not all studies found evidence of allelopathy. A controlled study by Olson and Wallander [161] found little to no effect of leafy spurge litter leachate or leafy spurge-infested soils on germination, seedling growth, or seedling survival of bluebunch wheatgrass or western wheatgrass.
Soils and soil biota: Impacts of leafy spurge on associated vegetation may be related to changes in soils or soil biota from leafy spurge dominance or leafy spurge control and management. In Rocky Mountain National Park, Colorado, researchers conducted pairwise comparisons between mountain meadows dominated by leafy spurge and meadows with low leafy spurge abundance. Leafy spurge-dominated areas had been mechanically and chemically treated. There were significantly more native plants on uninfested than infested plots (P=0.043). There were more nonnative species on infested than uninfested plots, although differences were not significant. The number of soil microarthropods was significantly greater on uninfested than infested plots (P<0.05) [168].
In a greenhouse study, plant growth was compared in soils taken from containers where either leafy spurge, smooth brome, or native species were grown. Growth of white heath aster (Symphyotrichum ericoides var. ericoides), Lewis flax (Linum lewisii), upright prairie coneflower (Ratibida columnifera), and prairie Junegrass (Koeleria pyramidata) seedlings was lower in soils from pots with leafy spurge than in soils from pots with native species. Blue grama (Bouteloua gracilis) and green needlegrass (Nassella viridula) seedling growth was similar in soils from pots with leafy spurge and soils from pots with native species. Leafy spurge seedling growth was lower in soils from pots with native species than in soils from pots with smooth brome [86].
Economic impacts: Many studies have attempted to estimate the economic impacts of leafy spurge invasion. While most studies evaluated land value changes associated with reductions in cattle carrying capacities, others included reductions related to wildlife-associated recreation, soil and water conservation, as well as other social and environmental impacts. In North Dakota, researchers assessed the economic impacts of leafy spurge on wildlands. At the leafy spurge infestation levels present in the early 1990s, the direct economic impacts on wildlife-associated recreation, soil and water conservation, and other intangible benefits amounted to 3.6 million dollars. When evaluated with other direct and secondary economic impacts on wildlands and rangelands, costs were estimated at over 87 million dollars [230].
Value of ranch land in North Dakota that was heavily infested with leafy spurge was reduced by 60 to 85 dollars/acre based on reductions in livestock carrying capacity (Weiser 1995 cited in [158]). In the mid 1980s, the sale price of a large ranch in Klamath County, Oregon, was reduced by 83% because of leafy spurge infestations (Begley 1998 cited in [45], Weiser 1995 cited in [158]). Although the sale stipulated that the new owner must control the leafy spurge, 6 years and 60,000 dollars later there was little control (Weiser 1995 cited in [158]). Rinella and Luschei [184] developed models to estimate the economic impacts of leafy spurge at local and regional scales. For a 17-state area west of Minnesota and Texas, the model estimated that leafy spurge reduced the cattle carrying capacity by 50,000 to 217,000 cows/year and decreased the value of grazing lands by 8 to 34 million dollars/year [184].
Additional information is available on the economic impacts of leafy spurge in North Dakota [108,109] and the upper Great Plains [110]; on the economic impacts of leafy spurge on wildlands in Montana, South Dakota, and Wyoming [7]; on the social and economic impacts of leafy spurge in Montana [182]; on the social and economic impacts of leafy spurge on public lands in North Dakota and Montana [126]; and on the regional environmental, economic, and societal impacts of invasive species, including leafy spurge [47].
Impacts on wildlife: Leafy spurge was associated with reduced habitat utilization by ungulates in North Dakota, as well as low abundance and/or nesting success for several bird species in North Dakota and Manitoba. For 2 years in North Dakota's Theodore Roosevelt National Park, researchers compared ungulate use of leafy spurge-infested and uninfested habitats. Bison and deer (white-tailed deer and mule deer) pellet group densities were significantly (P<0.001) lower on infested than uninfested sites. Elk pellet group densities averaged 81% lower on infested than uninfested sites (P<0.1) [214]. In North Dakota's Sheyenne National Grassland, researchers surveyed grassland breeding bird densities and nesting success on plots with low (<20%), medium (20-60%), and high (>60%) cover of leafy spurge. Grasshopper sparrow and savannah sparrow densities were significantly lower on plots with high cover than those with medium or low cover (P<0.05). Densities of bobolinks and western meadowlarks were not significantly different on plots with low, medium, or high cover. Low-cover plots averaged 63 nests and 24 species; medium-cover plots averaged 57 nests and 26 species; and high-cover plots averaged 37 nests and 15 species [193]. In Manitoba, upland sandpipers and Sprague's pipits were significantly more abundant in native- than nonnative-dominated vegetation (P<0.05), but the opposite was true for grasshopper sparrows (P=0.059). Native prairie was dominated by blue grama, obtuse sedge (Carex obtusata), and porcupine grass (Hesperostipa spartea). Nonnative vegetation was dominated by smooth brome, Kentucky bluegrass, and leafy spurge. Cover of leafy spurge ranged from 17% to 81% [239].
Pollinators: Study findings are mixed regarding leafy spurge's effects on competition for pollinators. When insect visitation and pollen deposition were evaluated in leafy spurge-infested and uninfested prairies in Theodore Roosevelt National Park, competition for pollinators was not widespread and varied annually. In some years, native halictid bees visited infested prairies less frequently than uninfested prairies. Researchers suggested that pollination of rare species could be limited by the combined reductions in native flower density and conspecific pollen transfer [107]. Observations together with greenhouse and field experiments indicate that although leafy spurge and prairie violet (Viola pedatifida) share pollinators, evidence of pollination competition between the species was lacking. Prairie violet seed set was reduced when leafy spurge pollen was applied to flowers before successful pollination by conspecific pollen. Prairie violet received significantly more leafy spurge pollen on sites with than without leafy spurge (P<0.05). However, prairie violet fruit set was significantly higher on sites with than without leafy spurge (P=0.004) [144].
Climate change: Predicted future changes in climate may differentially affect leafy spurge's future distribution and invasiveness. Increases in CO2 levels may increase the invasibility of sites or the competitiveness of leafy spurge. A greenhouse experiment demonstrated that leafy spurge leaf and stem weights increased significantly at past, present, and predicted future CO2 levels [243]. However, responses of associated native species were not investigated. Using bioclimatic modeling, researchers predict that the risk of invasion by leafy spurge could decrease in Colorado, Nebraska, Minnesota, and parts of Idaho and Oregon, but could increase in Canada [22].
Control: In their review, Hansen and others [70] report that leafy spurge is "extremely difficult to control with herbicides" and "almost impossible to control by cultural or physical methods". Many sources indicate that prioritizing control is important to successful management. Weed control handbooks and management guides report that early detection of new and small leafy spurge populations should be a top control priority, because well established populations are rarely controlled by any contemporary methods [20,45].
Land managers and researchers suggest that small leafy spurge patches should be treated before focusing on large populations, and that broadcast treatments for large infestations are largely unsuccessful. Lym and Zollinger [125] suggest mapping leafy spurge populations, protecting uninfested areas, treating small infestations first, and treating large populations from the outside edges inward. Researchers found that small leafy spurge patches in Saskatchewan increased in size at a much greater rate than large patches. In 5 years, a 7-ft² (0.6 m²) patch increased in area by 387 times, while a 701-ft² (65 m²) patch increased by 30 times. Assuming a lateral spread rate of 2 feet (0.6 m)/year for 5 years, a 0.5-foot (0.2 m) diameter patch would increase almost 500 times as fast as a 25-foot (7.6 m) diameter patch [199]. Using spatial growth models, researchers found that control could be improved by focusing on the elimination of satellite populations before treating large infestations. Control was "greatly improved" by eliminating just 30% of satellite populations [145].
Persistence, monitoring, and evaluating and adjusting methods are essential to long-term management of leafy spurge [99]. Leafy spurge sprouts emerge from surviving root portions even after elimination of all aboveground tissue. Monitoring and follow-up treatments may be necessary for up to 10 years after aboveground removal [16]. Control of biotic invasions is most effective when it employs a long-term, ecosystem-wide strategy rather than a tactical approach focused on battling individual invaders [127]. Various control methods and procedures are discussed by Lajenuesse and others [99], and Maxwell and others [137] developed a leafy spurge population model that assesses management strategies and allows managers to target leafy spurge's most vulnerable life stages.
In all cases where invasive species are targeted for control, no matter what method is employed, the potential for other invasive species to fill their void must be considered [25]. In biocontrol release areas in east-central and southeastern North Dakota, leafy spurge densities were reduced by 51% to 98%, but there was "little evidence" that leafy spurge was being replaced by desirable native species [106]. In Montana's Carter County, researchers found that nonnative species, primarily bluegrass (Poa spp.), replaced leafy spurge after its control by flea beetles. Although the flea beetles reduced leafy spurge cover and increased total vegetation abundance, there was little change in plant species composition or relative cover. Increases in total vegetation cover were primarily attributed to increases in nonnative species [30]. On the Altamont Prairie Preserve in eastern South Dakota, leafy spurge plots were grazed at high intensity for 4 years by goats or sheep. Flea beetles were released in the grazed area and within 5 years of their introduction, leafy spurge cover was reduced significantly (P<0.001). However, there were no dramatic increases in species richness associated with reductions in leafy spurge [38].
Prevention: It is commonly argued that the most cost-efficient and effective method of managing invasive species is to prevent their establishment and spread by maintaining "healthy" natural communities [127,201] (e.g., avoid road building in wildlands [216]) and by monitoring several times each year [84]. Managing to maintain the integrity of the native plant community and mitigating the factors enhancing ecosystem invasibility are likely to be more effective than managing solely to control the invader [81].
Weed prevention and control can be incorporated into many types of management plans, including those for logging and site preparation, grazing allotments, recreation management, research projects, road building and maintenance, and fire management [220]. Cleaning the seeds and root pieces from equipment before moving it into an uninfested area is important to preventing the establishment of new leafy spurge populations [45]. See the Guide to noxious weed prevention practices [220] for specific guidelines in preventing the spread of weed seeds and propagules under different management conditions.
Fire: For information on the use of prescribed fire to control this species, see Fire Management Considerations.
Cultural control: In a review, Hansen and others [70] reported that leafy spurge is "almost impossible to control by cultural or physical methods". While cultural control methods alone are unlikely to control leafy spurge, some management success has been reported with the combined use of cultural and chemical methods (see Integrated management).
Physical or mechanical control: Repeated cutting or mowing can limit leafy spurge seed production but may not reduce leafy spurge or restrict vegetative spread [16,45]. The milky sap in leafy spurge stems can build up in equipment, making it less effective and more difficult to operate [12].
Biological control: Domestic sheep and goats as well as a variety of insects have been used to control leafy spurge. While continued grazing by domestic sheep and goats is often successful in reducing leafy spurge stem abundance, roots survive and plants may still spread vegetatively [45,138,231]. Leafy spurge typically recovers when grazing pressure is removed [138,231]. Of the many Eurasian insects introduced to the United States and Canada to control leafy spurge, flea beetles have been most successful in providing long-term control thus far (2010). The use of pathogens or fungi in the biological control of leafy spurge has been studied, but as of 2010, none has been released [73,125,242].
Domestic sheep and goats: Control of aboveground growth and seed production are commonly reported in leafy spurge grazing management studies. After 4 years of continuous grazing by domestic sheep in Saskatchewan, leafy spurge shoot density was lower on grazed than ungrazed plots. After 8 years of grazing, the density of leafy spurge shoots was 5 to 10 shoots/m², and the seed bank density was 15 seeds/m². Within 2 years of removing grazing pressure, leafy spurge density was recovering [21]. After 4 or 5 years of domestic sheep grazing near Pearce, Alberta, basal area of leafy spurge decreased significantly, and basal area of crested wheatgrass increased significantly (P<0.05). Sheep avoided mature leafy spurge plants, and some poisoning occurred (for details, see the Livestock section above) [85]. After 2 years of domestic sheep grazing in Gallatin County, Montana, leafy spurge seedling density was reduced significantly (P<0.0001), and the number of viable leafy spurge seeds was reduced by 65%, which was a significantly larger decrease than that on ungrazed sites (P<0.009). Density of mature leafy spurge was not affected in 2 years of grazing, but density of Idaho fescue increased significantly (P<0.0002). However, grazing decreased the density of bluebunch wheatgrass (P<0.08) and increased the frequency of annual brome grasses (P<0.02) [159]. It is important to note that domestic sheep and goats can pass and disperse viable leafy spurge seed. These grazing animals should be kept from uninfested areas until leafy spurge seeds have passed, which was determined to be 5 days for goats and 9 days for sheep in a controlled feeding study [97]. Studies indicate that sometimes utilization differences exist between sheep with and without prior experience grazing leafy spurge [157,228].
Studies reported conflicting findings about prior exposure and learned behavior as it relates to leafy spurge control by domestic sheep. In Montana's Gallatin County, differences in leafy spurge grazing by naive and experienced yearlings was short-lived. In early summer, experienced yearlings grazed leafy spurge 4 times as much as naive yearlings, but by the 25th day of grazing, the 2 yearling groups grazed leafy spurge similarly [157]. In another study, experience increased leafy spurge utilization by sheep. Leafy spurge at a late phenological stage was grazed better by experienced than inexperienced sheep [228].
During confined feeding and field grazing studies on the upper Snake River Plains in southeast Idaho, domestic goats preferred leafy spurge more than sheep did. Goats concentrated on leafy spurge and avoided grasses (P<0.03), while the opposite was true for sheep. Within 8 weeks of grazing trials, leafy spurge was taller (P=0.07) and produced more flowers (P=0.04) in sheep-grazed than goat-grazed pastures [229]. In mesic to wet tallgrass prairie on South Dakota's Altamont Prairie Preserve, goat grazing resulted in greater leafy spurge control than sheep grazing. In 4 years of high-intensity grazing, leafy spurge cover increased by almost 30% in sheep-grazed pasture, was nearly unchanged in goat-grazed pasture, and nearly doubled in ungrazed pasture (P<0.001) [38].
Because domestic goats prefer forbs over grasses, leafy spurge often decreased and graminoids often increased with goat grazing. However, desirable forbs and shrubs can be reduced by domestic goats. After 3 or 4 years of grazing by angora goats in prairie and open woodland sites in Eddy County, North Dakota, leafy spurge frequency decreased and graminoid frequency increased significantly (P<0.05). Goat stocking was increased each year, and leafy spurge density was reduced by 12.5% and 84.2% after 1 and 4 years of grazing, respectively [195]. In Montana, researchers tested shock collars and invisible fencing to contain goats in leafy spurge-infested areas. While the containment method was successful and leafy spurge comprised the majority of goat diets, "brush and forb species were significantly impacted" [139]. After 3 years of grazing in mixed-grass prairie at a North Dakota National Guard training area, leafy spurge stem densities were unchanged in the cattle-grazed plot, reduced by 70% in the goat-grazed plot (P<0.05), and reduced by 60% in the cattle- and goat-grazed plot (P<0.05). Graminoid herbage production was unchanged by cattle grazing, increased significantly with goat grazing, and decreased significantly with goat and cattle grazing (P<0.05). Shrub utilization was not different among the grazed plots [171].
Several studies evaluated the economics associated with control of leafy spurge by domestic sheep. An economic feasibility study found that the addition of sheep to cattle ranches in Montana yielded positive returns when leafy spurge infested just 10% of a pasture. Positive returns increased with increased leafy spurge abundance and when infestations were concentrated on a few pastures [236]. In another study, Sell and others [197] estimated the economics related to cooperative fall, winter, or spring sheep grazing operations. Only spring grazing showed the potential to generate income, and this potential decreased as acreage infested by leafy spurge increased. Bangsund and others [9] found the economics of different grazing scenarios varied with carrying capacities, leafy spurge spread rates, rangeland productivities, fencing costs, and grazing patterns.
Insects: Many Eurasian insects have been approved and released for biological control of leafy spurge. Insects established in the United States include the leafy spurge hawk moth (Hyles euphorbiae), the red-headed leafy spurge stem borer (Oberea erythrocephala), the leafy spurge tip gall midge (Spurgia esulae), and 5 flea beetle species: Aphthona cyparissiae, A. czwalinae, A. flava, A. lacertosa, and A. nigriscutis [62,63,64,65,66,67,68,69,71]. By 1996, at least 1 of these insects was established in each of 18 states and 148 counties and produced collectable populations in 16 states and 62 counties [71].
Leafy spurge hawk moth larvae feed on leaves and bracts and are established from Idaho to Nebraska and Minnesota. Alone, leafy spurge hawk moths are ineffective controls [67]. Red-headed leafy spurge stem borer larvae feed in leafy spurge stems and crowns, and adults feed on leaves and stems. As of 2004, stem borers had not "noticeabl(y)" impacted leafy spurge, although established from Oregon to Colorado and Minnesota [68]. Leafy spurge tip gall midge larvae attack leafy spurge growing points and reduce flower and seed production. Gall midges disperse long distances, and as of 2004, occurred from Idaho to Colorado and east to Rhode Island [69]. Flea beetle larvae feed on leafy spurge root hairs and young roots, and adults feed on leaves and flowers. Information about the distribution, biology, ecology, establishment, spread, preferred habitats, and control success for leafy spurge biocontrols in North America is summarized in the following sources: [37,71,156,181].
Flea beetles: So far (2010), flea beetles are the most successful biocontrol agents for leafy spurge in North America [71,156]. As of 2004, flea beetle populations were established nearly throughout the western United States, the northern Great Plains, the Great Lakes states, and in the northeastern states of New York, Rhode Island, and New Hampshire [62,63,64,65,66]. Because flea beetles have provided the most effective control of leafy spurge, they are the most widely dispersed and most studied of the biocontrol insects. Although flea beetles do not eradicate leafy spurge, they can reduce its abundance and negative impacts [142]. An abundance of information is available about flea beetle habitat requirements, population dynamics, maintenance, persistence, and effects on leafy spurge populations. While some information regarding these topics is summarized in the discussions below, the bulk is summarized and described in bibliographical form in Table 1.
Successful flea beetle establishment requires knowledge of their habitat requirements, which are often related to leafy spurge stem densities, soils, and climate. Some studies report good control of leafy spurge by flea beetles in areas with soil-borne pathogens, such as Rhizoctonia solani and Fusarium spp. In the greenhouse, leafy spurge damage was more rapid when pathogens and insects occurred together than when either agent occurred alone. The researcher suggested that screening for or adding soil pathogens to flea beetle release sites could improve biocontrol [31,32]. In general, optimal flea beetle release sites occur on south-facing, sunny slopes with dry, loamy soils; however, there are species-specific differences. For instance, A. lacertosa establishes on cool, moist sites and may establish well in draws. Recommended release dates are from mid-June to mid-July, and establishment improves with increased abundance of flea beetles released. At least 1,000 beetles/drop point is recommended. Releasing flea beetles at the edge of dense leafy spurge patches or in sparse points within patches is typically better than releasing them within dense stands. For more information on monitoring, harvesting, storing, transporting, and rereleasing flea beetles, as well as guidelines for integrated control that ensures maintenance of established flea beetle populations, see the review by Merritt and others [142]. Additional information on species-specific habitat preferences is available in Table 2.
Flea beetles can be persistent and provide long-term leafy spurge control; however, control success can vary by site and flea beetle species. On 2 of 3 sites in east-central North Dakota, flea beetle populations were still present and leafy spurge was reduced substantially, even though releases were made 11 to 16 years earlier. Populations of A. lacertosa and A. czwalinae were much larger than those of A. nigriscutis, which had not substantially impacted leafy spurge [104]. Findings were similar along railroad rights of way in North Dakota. Within 4 years of release, A. czwalinae and A. lacertosa populations averaged 79 beetles/m², resulted in leafy spurge stem density reductions of 95% or more, and were impacting leafy spurge more than 330 feet (100 m) from the release site. Within 5 years of release, A. nigristicus populations resulted in leafy spurge stem density reductions of about 60%, although populations never exceeded 10 beetles/m², and impacted leafy spurge only 52 feet (16 m) from the release site [121].
Although flea beetles often decreased abundance of leafy spurge, this decreased abundance can negatively affect flea beetle populations and may not be associated with the recovery of desirable and diverse native plant communities. For 6 years, researchers monitored the establishment and effects of flea beetles on many sites in northwestern South Dakota and southeastern Montana. Aphthona lacertosa and A. czwalinae established on a variety of grassland and shrubland vegetation types; A. nigriscutis was less common and restricted to dry, sandy sites. Leafy spurge cover on and near release sites was significantly lower than prerelease levels (P<0.05). However, as cover of established leafy spurge plants decreased, seedling abundance increased and flea beetle abundance decreased. Grass species cover increased, but the same was not true for forb species [29]. Within 5 years of releasing flea beetles in North Dakota's Little Missouri National Grasslands, leafy spurge stem density was reduced by 90%, and its emergence from soil collected at release sites decreased from 68% to 14%. Abundance of other forbs in the soil at release sites increased, but increases were largest for less desirable and nonnative forbs. The percentage and number of desirable grasses in the soil at release sites decreased. In the greenhouse, the combined average production of green needlegrass, little bluestem (Schizachyrium scoparium), switchgrass (Panicum virgatum), and western wheatgrass was significantly (P<0.05) less in soils from release sites than from non-release sites after 8 weeks of growth. At both the release and nonrelease sites, leafy spurge densities were low [35]. Leafy spurge biomass and crown and stem densities were reduced by 60% to 80% with 2 years of inundative flea beetle releases (50 beetles/flowering stem) in riparian areas in Idaho. Cover of other forbs and grasses, however, did not increase [169].
Additional studies and their evaluations on leafy spurge and flea beetle populations are available. Consult Table 1 for a list of these studies and a brief summary of the information they provide.
Biological control of invasive species has a long history that indicates many factors must be considered before using biological controls. Refer to these sources: [223,237] and the Weed control methods handbook [215] for background information and important considerations for developing and implementing biological control programs. Lym [116] provides a review of the biological control of leafy spurge using insects, sheep, and/or goats.
Chemical control: Many sources provide information about the types of chemicals, timing of herbicide applications, and application techniques that are potentially useful in controlling leafy spurge: [2,16,113,115,116]. These studies and reviews are not summarized in detail in this review. See the Weed control methods handbook [215] for considerations on the use of herbicides in natural areas and detailed information on specific chemicals.
Long-term control of leafy spurge, especially large, well-established populations, is unlikely with herbicides alone. In a review, Hansen and others [70] reported that leafy spurge is "extremely difficult to control with herbicides", because of its ability to "purge" chemicals from its root system. In controlled studies, less than 7% of the picloram that was applied to the aboveground portions of leafy spurge occurred in the roots. More than 60% of the chemical had been released and was found in the area surrounding leafy spurge roots [78]. A waxy protective layer on leafy spurge leaves and stems also makes chemical control difficult without addition of a surfactant or wetting agent [57]. Although some indicate that proper timing of herbicide applications can improve control and prevent seed production (Messersmith personal communication cited in [1,75,206]), long-term control of leafy spurge with herbicides alone is unlikely and often economically infeasible. For more information on potentially improving the timing of chemical treatments, see Root carbohydrate storage.
Studies have uncovered several issues related to the control of leafy spurge with herbicides. These issues include the need for continual treatments, lack of long-term control, detrimental effects on associated vegetation, and high treatment costs. In tallgrass prairie in North Dakota, leafy spurge still dominated the seed bank the year after 2 applications of various herbicides, suggesting that it was likely to dominate the recovering vegetation [95]. Although leafy spurge abundance was reduced substantially after 20 years of annual herbicide treatments at Devil's Tower National Monument in Wyoming, populations were not eradicated. Researchers suggested that preventing population spread would require continuing spot herbicide treatments indefinitely [16]. A single herbicide treatment in a leafy spurge-infested grassland near Grass Range, Montana, was associated with long-term decreases in some native forbs and likely an increased abundance of leafy spurge. Prairie goldenrod (Solidago missouriensis) and western yarrow (Achillea millefolium) did not recover to pretreatment population levels even 16 years after the herbicide application, regardless of posttreatment grazing. Velvety goldenrod (S. mollis), white prairie aster (Symphyotrichum falcatum), American vetch (Vicia americana), and fringed sagebrush (Artemisia frigida) were significantly rarer after the herbicide treatment when plots were not grazed. Researchers concluded that when managing nonnative, invasive species, "the treatment can be worse than the disease" [185].
Several studies report that chemical control of leafy spurge, especially large populations, is often cost prohibitive [116]. A rancher in central Montana spent $25,000 over 2 seasons to apply herbicides to leafy spurge and described treatment results as like having "put fertilizer on the stuff" (Elliot 1997 cited in [40]). In a weed management review, Fay [52] reports that "eradication of well established leafy spurge patches with herbicides is nearly impossible. The picloram rates needed for control (of leafy spurge) are four to eight times the rates used for spotted knapweed" (Centaurea maculosa), making large population treatments extremely costly. Based on rangeland condition factors including grazing values, carrying capacities, leafy spurge spread rates, herbicide effectiveness, and treatment costs, researchers reported that "the levels of productivity at which most herbicide treatment programs break even is higher than the levels of productivity found in much of North Dakota's grazing land" [8]. Lym and Messersmith [120] provide more information about the costs associated with chemical treatment of leafy spurge.
While herbicides are often effective in gaining initial control of a new invasion or a severe infestation, they are rarely a complete or long-term solution to weed management [27]. Some studies report improved control or herbicide effectiveness when chemical treatments were combined with other control methods; however, long-term control was rarely evaluated. In North Dakota's Little Missouri National Grassland, leafy spurge was reduced at least initially when a fall herbicide treatment was followed by a spring fire [82]. Along rights of way in Eden Prairie, Minnesota, leafy spurge was nearly eliminated after sites were twice treated with herbicides followed by fall fires. Treated sites were dominated by yellow foxtail (Setaria pumila subsp. pumila) and witchgrass (Panicum capillare) immediately following 2 years of treatments [17]. In North Dakota grasslands, control of leafy spurge was better on plots treated with herbicide and biocontrols or herbicide and grass seeding than on plots treated with herbicide alone. Survival and growth of flea beetles could likely be improved by releasing them 1 year after herbicide treatments or releasing them in a refuge near the treated area [87]. For more on combining control methods to manage leafy spurge, see Integrated management below.
Integrated management: Several studies evaluated leafy spurge control using herbicides and/or fire together with biocontrols or posttreatment grass seeding. Combining goat grazing and herbicide treatments or herbicides and grass seeding often provided better control than either treatment alone; however, using herbicides with insect biocontrols rarely improved long-term leafy spurge control.
Biocontrols and herbicides: In North Dakota's Sheyenne National Grassland, goat grazing followed by a fall herbicide treatment reduced leafy spurge density more quickly and provided longer control than either method alone. However, several years after the treatments, differences between single and combination treatments were not always significant (P<0.05) [123]. Leafy spurge stem densities were reduced more rapidly when herbicides were used on sites with established flea beetle populations, but once flea beetles populations were established for 5 to 12 years, leafy spurge stems densities were rarely significantly different between herbicide-treated or untreated plots [122]. Findings were similar in leafy spurge-infested silver sagebrush-grasslands in Theodore Roosevelt National Park, North Dakota. Within 3 years of herbicide treatment, density of leafy spurge stems was not significantly different on flea beetle sites with and without herbicide treatment. The herbicide-treated plots, however, did have significantly fewer flea beetles than untreated plots 1 and 2 years later (P<0.05) [105].
Herbicides and/or fire and grass seeding: Several studies suggest that herbicide application and/or burning followed by grass seeding can provide leafy spurge control, which may persist for several years. An herbicide treatment followed by seeding of brome (Bromus spp.), wheatgrass (Agropyron spp.), or wildrye (Elymus spp.) cultivars often reduced leafy spurge stem densities [124]. Seven to 10 years following an herbicide treatment and no-till seeding of wildrye and wheatgrass in Crook County, Wyoming, leafy spurge cover was at least 20% lower than on control plots [54]. On a floodplain in the Minnesota Valley National Wildlife Refuge, 2 years after plots were herbicide treated and seeded with little bluestem or mixed grasses, leafy spurge cover was significantly reduced from pretreatment levels (P<0.05). On plots treated only with herbicides, control of leafy spurge was noted for only 1 year [15].
Leafy spurge was controlled in mixed-grass prairie sites in Nebraska, at least temporarily, after native grasses or grass-legume mixes were seeded on sites prepared through a combination of mowing, burning, and/or herbicide treatments. Leafy spurge abundance was lower and forage abundance was higher in treated than untreated plots. Long-term control of leafy spurge was not evaluated [133,134]. For additional information on controlling leafy spurge through the integrated use of herbicides, fire, and revegetation, see Masters and others [135].