Sewage and fecal pollution

In Puget Sound, fecal pollution comes from both point-source origins such as combined sewer overflows and direct marine effluent discharge as well as non point-source origins such as surface water runoff, both of which increase with rainfall and river and stream discharge. In addition to serving as an indicator of pathogens, fecal bacterial pollution can also be an indicator of nutrient loading because sewage often contains high levels of nitrogen and phosphorous. Both point source (failing septic systems) and non-point sources (landscape features) contribute to fecal bacterial levels in Puget Sound. 

Source: Puget Sound Science Review

OVERVIEW

Marine fecal bacteria

Fecal bacteria are found in the feces of humans and other homeothermic animals. They are monitored in recreational waters because they are good indicators of harmful pathogens that are more difficult to measure. 

RELATED ARTICLES

Cover of 2022 Salish Sea toxics monitoring synthesis: A selection of research
9/1/2023

2022 Salish Sea toxics monitoring synthesis: A selection of research

A 2023 report from the Puget Sound Ecosystem Monitoring Program presents an overview of selected recent monitoring and research activities focused on toxic contaminants in the Salish Sea. 

Report cover
10/27/2021

Puget Sound Marine Waters 2020 Overview

The tenth annual Puget Sound Marine Waters Overview looks at marine water quality and other conditions in the region in 2020. According to the report, there were few extreme weather or ecological events in 2020, but overall, conditions in Puget Sound were generally warmer, sunnier, and wetter than in typical years. The overview also examines patterns and trends in numerous environmental parameters, including plankton, water quality, climate, and marine life. 

Graphical abstract showing E.coli isolates characterized for phenotypic and genotypic resistance to antibiotics
10/8/2021

Surveillance for antibiotic-resistant E.coli in the Salish Sea ecosystem

A 2021 study published in the journal Antibiotics suggests that animals may be potential sentinels for antibiotic-resistant and extraintestinal pathogenic E. coli in the Salish Sea ecosystem. 

Pacific Oyster (Crassostrea gigas). Photo by Don Rothaus. Courtesy of the Washington Department of Fish and Wildlife.
9/7/2021

Regional perspectives on the effectiveness of Puget Sound shellfish recovery actions

A 2021 report commissioned by the Washington State Department of Natural Resources identifies potential actions at the state or local level, or in combination, that could further bolster shellfish bed recovery in support of the Puget Sound Partnership's shellfish bed recovery target.

The Nooksack River in autumn.
8/19/2021

Nooksack River Transboundary Technical Collaboration Group 2020-2021 annual report

The Nooksack River watershed spans part of the border between British Columbia and the State of Washington. In August 2018, the international, multi-agency Nooksack River Transboundary Technical Collaboration Group (TCG) was established to implement a three-year work plan to reduce fecal bacteria concentrations in the Nooksack River watershed. The 2020-2021 TCG annual report summarizes third and final year project activities and focuses on three of the watershed's transborder sub-basins.

Report cover
12/2/2020

2019 Puget Sound Marine Waters Overview

A new report from the Puget Sound Ecosystem Monitoring Program details the effects of a changing climate on Puget Sound in 2019, and documents how these changes moved through the ecosystem to affect marine life and seafood consumers.

A tributary of the Nooksack River. Photo courtesy NOAA Fisheries.
9/10/2020

Nooksack River Transboundary Technical Collaboration Group 2019-2020 annual report

The Nooksack River watershed spans part of the border between British Columbia and the State of Washington. In August 2018, the international, multi-agency Nooksack River Transboundary Technical Collaboration Group (TCG) was established to implement a three-year work plan to reduce fecal bacteria concentrations in the Nooksack River watershed. This 2019-2020 TCG annual report summarizes second year project activities and focuses on three of the watershed's transborder sub-basins.

Nooksack River. Photo: Ronald Woan (CC BY-NC 2.0) https://flic.kr/p/BR87Hp
5/5/2020

Nooksack River Transboundary Technical Collaboration Group 2018-2019 annual report

The Nooksack River watershed spans part of the border between British Columbia and the State of Washington. In August 2018, the international, multi-agency Nooksack River Transboundary Technical Collaboration Group was established to implement a three-year work plan to reduce fecal bacteria concentrations in the Nooksack River watershed. As a work plan deliverable, the group produced this annual report summarizing first year project activities.

Beach closed sign. Photo: Washington Department of Ecology
4/9/2020

Pathogens Prevention Reduction and Control 5-6 (PC-00J88801) Final Report

The Pathogens Prevention Reduction and Control agreement between the Environmental Protection Agency and the Washington State Department of Health focuses on the prevention and reduction of pathogen pollution in Puget Sound through the management of human and animal waste. The primary objectives of the agreement include restoring shellfish growing areas, avoiding shellfish closures, and protecting people from disease.

Locations of shellfish beds in the Salish Sea (left) compared to regions predicted by the Salish Sea Model to have high microplastic accumulation (right). Maps: PNNL
3/30/2020

Ecosystem models expand our understanding of the Salish Sea

Scientists are using computer models to address complex issues in the Salish Sea like the rise of harmful algal blooms and the movement of toxic PCBs. LiveOcean, Atlantis and the Salish Sea Model are three systems that are changing the game for ecologists and other researchers.

Eyes Over Puget Sound report cover
8/7/2019

Eyes Over Puget Sound: Surface Conditions Report - July 29, 2019

In July, the recent trends of warm, dry conditions lessened; however, river flows remain low. Extensive macroalgae drifted through South and Central Sound and washed up on beaches. Macroalgae growth is fueled by excessive nutrients and sunshine. When it washes onto the beach, it is called beach wrack, and it can be a health risk to beachgoers because of bacteria it can harbor. From our aerial photography, we saw that Southern Hood Canal looks tropical because of a bloom of coccolithophores coloring the water turquoise. Schools of fish congregate in South Sound and southern Hood Canal. Jellyfish are abundant in Quartermaster Harbor.

Cover of 2018 Salish Sea Toxics Monitoring Synthesis: A Selection of Research
3/31/2019

2018 Salish Sea toxics monitoring synthesis: A selection of research

A 2019 report from the Puget Sound Ecosystem Monitoring Program presents an overview of selected recent monitoring and research activities focused on toxic contaminants in the Salish Sea. 

Water drop image courtesy of Bureau of Ocean Energy and Management
12/4/2018

Ten things to understand about the Clean Water Act

The federal Clean Water Act of 1972 was designed as a logical step-by-step approach to clean up the nation's waterways. Most people acknowledge that the law has been effective in reducing pollution, but industrial and environment groups tend to be on opposite sides when discussing whether regulations and permits adequately protect water quality. These 10 elements of the Clean Water Act (CWA) focus on how the law applies to Puget Sound.

5/31/2018

Pathogens prevention reduction and control 1-4 (PC-00J32601): Final report

A report from the Washington State Department of Health outlines results from a series of projects funded by the U.S. Environmental Protection Agency's National Estuary Program in 2011. These projects addressed pathogen pollution in Puget Sound through the management of human and animal waste. Restoring shellfish growing areas, avoiding shellfish closures, and protecting people from disease served as the primary objectives.

A milky, turquoise, phytoplankton bloom in Hood Canal visible from space. Natural color MODIS image from Landsat 8 acquired July 24, 2016. Photo: NASA Earth Observatory https://earthobservatory.nasa.gov/NaturalHazards/view.php?id=88454
3/6/2018

Does Puget Sound need a diet? Concerns grow over nutrients

As the region's population grows, scientists say we can expect to see increasing amounts of nitrogen and other elements flowing into Puget Sound. Known as “nutrients” these elements are naturally occurring and even necessary for life, but officials worry that nutrients from wastewater and other human sources are tipping the balance. That could mean big problems for fish and other marine life, gradually depleting the water of oxygen and altering the food web.

The Budd Inlet sewage treatment plant. Photo courtesy of LOTT Clean Water Alliance
3/6/2018

Sewage treatment plant in Olympia a leader in nitrogen removal

A regional sewage-treatment system in Thurston County has helped contain  low-oxygen problems in Budd Inlet as the population continues to grow. The system cleans up some of the effluent for replenishing groundwater supplies.

The rapid growth of a red-orange algae, Noctiluca scintillans, dramatically colors the waters of Puget Sound near Edmonds on May 16, 2013. Such algae blooms have been seen more frequently in recent years. Photo: Jeri Cusimano via WA Ecology (CC BY-NC 2.0) https://www.flickr.com/photos/ecologywa/8744775119
2/28/2018

Dead plankton leave clues to a food-web mystery

High amounts of elements such as nitrogen can cause blooms of phytoplankton that sometimes trigger perturbations throughout the food web. This occurs most often in the spring and summer after the long, dark, cloudy days of winter begin to fade.

Image describing low oxygen "dead zones"; image courtesy of NOAA
2/26/2018

How the state assesses low oxygen in Puget Sound

Under the federal Clean Water Act, states are required to assess the quality of their surface waters and compile a list of polluted water bodies. The law mandates cleanup plans to address pollution and other water-quality problems. This article describes how this process works in Washington state for dissolved oxygen. 

Celebrating a community harvest at Drayton Harbor. Photo: Jack Kintner
3/7/2017

Bringing the shellfish back: How Drayton Harbor overcame a legacy of pollution

After a long struggle with pollution, Drayton Harbor has reopened to year-round commercial oyster harvesting for the first time in 22 years. Here’s how the community cleaned up its act, potentially showing the way for shellfish recovery throughout Puget Sound.

Fluoxetine hydrochloride. Photo: Meg (CC BY-NC-ND 2.0) https://www.flickr.com/photos/disowned/1125134972
11/9/2016

Concerns rise over rogue chemicals in the environment

Drugs like Prozac and cocaine have been showing up in the region’s salmon. But these are just some of the potentially thousands of different man-made chemicals that escape into the Salish Sea every day, from pharmaceuticals to industrial compounds. Now the race is on to identify which ones pose the greatest dangers.

Puget Sound Marine Waters 2015 report cover
9/27/2016

2015 Puget Sound Marine Waters Overview

The Puget Sound Ecosystem Monitoring Program released its fifth annual Marine Waters Overview this week. The report provides an assessment of marine conditions for the year 2015 and includes updates on water quality as well as status reports for select plankton, seabirds, fish and marine mammals.

Salmon. Photo: Dan Hershman (CC BY-NC 2.0) https://www.flickr.com/photos/hershman/497293505
2/29/2016

Contaminants of emerging concern in a large temperate estuary

A 2016 paper in Environmental Pollution identifies dozens of pharmaceuticals and other compounds that are accumulating in Puget Sound fish such as salmon.

2003 Seattle Marathon - Seward Park Photo: J Brew (CC BY-SA 2.0) https://www.flickr.com/photos/brewbooks/1282527696
2/17/2016

Cleaning up Lake Washington

Lake Washington was heavily contaminated by untreated sewage until extensive pollution controls by the city of Seattle. 

Sucralose, an artificial sweetener, is a good tracer of wastewater. It is present at low levels throughout the Puget Sound [1].
10/28/2015

Contaminants of emerging concern (CECs) in the waters of the Pacific Northwest

Contaminants of Emerging Concern (CECs) range from pharmaceuticals, personal care products and food additives to compounds used in industrial and commercial applications. These compounds are not typically removed from wastewater and are flushed into waterways throughout the world in significant amounts. This article describes how scientists are measuring the presence of these contaminants along with their potential impacts in Puget Sound, the Columbia River and elsewhere.

Stormwater flowing into catch basin carries contaminants to our waterways. Photo: Ben McLeod (CC BY-NC-SA 2.0) https://www.flickr.com/photos/benmcleod/420158390
10/7/2014

Citizens now the leading cause of toxics in Puget Sound

New research presented at the 2014 Salish Sea Ecosystem Conference shows that some of the greatest dangers to Puget Sound marine life come from our common, everyday activities. These pervasive sources of pollution are so woven into our lives that they are almost invisible to us, but it’s becoming impossible to ignore their effects.

5/21/2014

Regional investigations into the effects of CECs

Several research groups in the region are investigating biological markers and/or impacts of Contaminant of Emerging Concern (CEC) exposure in different organisms.  An abstract describing each study is included below.  Also included are links or contact details for further information about each project.

5/21/2014

Regional monitoring of CECs in the Salish Sea

Several studies have been performed to determine the occurrence of selected Contaminants of Emerging Concern (CECs) in the environment.

CECs include pharmaceuticals and thousands of other commonly used chemical compounds. Photo courtesy of EPA.
4/22/2014

Contaminants of emerging concern in the Salish Sea

Thousands of different compounds are produced and used as part of our daily lives.  Examples include pharmaceuticals (NSAIDs, birth control pills, etc), personal care products (sun screen agents, scents, preservatives, etc), food additives (artificial sweeteners) and compounds used in industrial and commercial applications (flame retardants, antibiotics, etc).  Advances in analytical methods have allowed the detection of many of these compounds in the environment.

Map of the Hood Canal Action Area; courtesy Puget Sound Partnership
9/19/2012

Review finds minimal evidence for human impacts on Hood Canal hypoxia

An independent review conducted by the Puget Sound Institute (PSI) is featured in findings by the Environmental Protection Agency and the Washington State Department of Ecology that there is currently “no compelling evidence” that humans are the cause for recent trends in declines in dissolved oxygen in Hood Canal.