Nutrient pollution

Nutrient pollution is caused by excess nitrogen and phosphorus in the air and water. Nitrogen and phosphorus are nutrients that are natural parts of aquatic ecosystems. Nitrogen is also the most abundant element in the air we breathe. Nitrogen and phosphorus support the growth of algae and aquatic plants, which provide food and habitat for fish, shellfish and smaller organisms that live in water. But when too much nitrogen and phosphorus enter the environment - usually from a wide range of human activities - the air and water can become polluted. Nutrient pollution has impacted many streams, rivers, lakes, bays and coastal waters for the past several decades, resulting in serious environmental and human health issues, and impacting the economy.

-- Source: U.S. Environmental Protection Agency

Overview

Complex physical processes such as hydrology, nutrient cycling, and sediment transport are linked to water circulation patterns in Puget Sound. 

Puget Sound. Photo: S.N. Johnson-Roehr (CC BY-NC 2.0) https://www.flickr.com/photos/snjr22/4095840433

Related Articles

Low dissolved oxygen levels put aquatic life in Puget Sound at risk – but not everywhere. A combination of careful monitoring efforts and powerful computer models are now enabling scientists to identify which areas of our regional waters are most prone to low oxygen levels, when, and why. This article is part of a series of reports funded by King County about the quest to define healthy oxygen levels in Puget Sound.

Chronic stress from lack of oxygen can make aquatic organisms more vulnerable to disease, pollution, or predation. Low oxygen can also result in reduced habitat for some species. Aquatic species may escape, acclimate, adapt, or die with exposure.

Estuaries around the world including Puget Sound perform an amazing feat of continuous water mixing called estuarine exchange flow. 

Nitrogen is a chemical element that is essential for the growth of all life on earth. But too much nitrogen can lead to low dissolved oxygen and other problems such as toxic algal blooms that can harm or kill aquatic organisms. 

The following fact sheet provides an overview of low oxygen conditions in Puget Sound. It addresses some of the related causes and concerns that have been identified by scientists in the region. The overview was prepared in conjunction with a series of workshops on hypoxia and nutrient pollution presented by the University of Washington Puget Sound Institute. 

In many parts of Puget Sound, hypoxic waters are thought to be at least in part due to overgrowth of microscopic algae, which is triggered by excess nitrogen. That means it’s important to understand the dynamics of primary productivity – the rate at which those microscopic algae, known as phytoplankton, produce organic matter through photosynthesis and in this way provide the base of the food web. Researchers are investigating different types of phytoplankton and rates of primary productivity throughout the Salish Sea, and seeking to understand how primary productivity is likely to change as climate change alters patterns of coastal upwelling and freshwater flow into the Sound.