Hypoxia

In some cases, vast stretches of open water become hypoxic, or low in oxygen. Unable to sustain life, these areas, called dead zones, may cause die-offs of fish, shellfish, corals, and aquatic plants.

Sources:

NOAA

Additional resources:

Hood Canal Dissolved Oxygen Program

Independent review of human impacts on dissolved oxygen in Hood Canal

 

Overview

The search goes on for a set of definitions and thresholds to represent low-oxygen concentrations that threaten various aquatic creatures. Over the years, ecologists have relocated, reshaped and revised the word “hypoxia” to describe these conditions. In part four of our series "Oxygen for life" we look at how scientists determine whether oxygen levels are low enough to be considered harmful to sea life. 

A crab pot (circular mesh cage) with an oxygen sensor (a white tube inside the cage) is held off the side of a boat as it is about to be dropped into the water.

Related Articles

Low dissolved oxygen levels put aquatic life in Puget Sound at risk – but not everywhere. A combination of careful monitoring efforts and powerful computer models are now enabling scientists to identify which areas of our regional waters are most prone to low oxygen levels, when, and why. This article is part of a series of reports funded by King County about the quest to define healthy oxygen levels in Puget Sound.

Oxygen is indisputably essential to aquatic life, but conflicts are brewing over water quality standards mandated in state regulations. This article is part of a series of reports funded by King County about the quest to define healthy oxygen levels in Puget Sound. By some estimates, those definitions could affect billions of dollars in state and local spending. [Editor's note: King County is currently in litigation with the Washington State Department of Ecology over the issue of dissolved oxygen water quality standards.]

Chronic stress from lack of oxygen can make aquatic organisms more vulnerable to disease, pollution, or predation. Low oxygen can also result in reduced habitat for some species. Aquatic species may escape, acclimate, adapt, or die with exposure.

Estuaries around the world including Puget Sound perform an amazing feat of continuous water mixing called estuarine exchange flow. 

Nitrogen is a chemical element that is essential for the growth of all life on earth. But too much nitrogen can lead to low dissolved oxygen and other problems such as toxic algal blooms that can harm or kill aquatic organisms. 

The following fact sheet provides an overview of low oxygen conditions in Puget Sound. It addresses some of the related causes and concerns that have been identified by scientists in the region. The overview was prepared in conjunction with a series of workshops on hypoxia and nutrient pollution presented by the University of Washington Puget Sound Institute.