Species and food webs

Puget Sound hosts more than 100 species of seabirds, 200 species of fish, 15 marine mammal species, hundreds of plant species, and thousands of invertebrate species (Armstrong et al. 1976; Thom et al. 1976; Canning and Shipman 1995). Visit our species page for a full list. The array of species found in Puget Sound reflects its high productivity, the wide diversity of habitats present, and its unique geographic location at the interface of “northern” and “southern” ranges for many species. These species do not exist in isolation, but rather interact with each other in a variety of ways: they eat and are eaten by each other; they serve as vectors of disease or toxins; they are parasitic; and they compete with each other for food, habitat, and other resources.

There is no single food web in the Puget Sound ecosystem. Instead there are many marine food webs that reside in the soft-bottomed nearshore, in rocky-bottomed areas, in habitats dominated by eelgrass or kelp, and in pelagic areas as well. Similarly, there are terrestrial and freshwater aquatic food webs that occur in alpine habitats, mid-elevation and lowland forests, and rivers, lakes, and streams. The food webs in each of these areas are not discrete and independent, but rather are highly interconnected by organic matter sources, physical proximity, exchange of water, and organisms that change habitats during the course of their life cycles.

Food webs also change both in time and space due to variation in stratification, prey availability, organic-matter source availability and quality, and other local and regional conditions. In addition, some species occupy multiple places or play multiple roles in the food web depending on their life stage, size, habitats they occupy, and time of year.

Sources:

Sound Science: Synthesizing ecological and socioeconomic information about the Puget Sound ecosystem. Published 2007. Used by permission.

Overview

The health of an ecosystem is tied closely to the health of its food webs. This article provides an overview of the concept, origin, and characteristics of a food web and how predator and prey relationships are shaped in the Salish Sea.  

Bear eats salmon. Photo: Robert Voors (CC BY-NC-ND 2.0) https://www.flickr.com/photos/robert_voors/1303192433

Related Articles

Restoration managers are hopeful that populations of coho, chum and pink salmon will rebound on the Elwha River as the fish take advantage of newly accessible habitat. Part five of our series 'Returning home' examines the importance of genetically distinct salmon runs.

The return of sockeye to the Elwha River is intriguing scientists. Could nearby freshwater kokanee help re-establish resident populations? We continue with part four of our series 'Returning home: The Elwha's genetic legacy.' 

Following dam removal, migratory salmon have been free to swim into the upper Elwha River for the first time in 100 years. Their actual behaviors and reproductive success may well be driven by changes in their genetic makeup. Our seven-part series 'Returning home' examines how the fish are doing and whether the Elwha's genetic legacy remains intact. 

Migration patterns have apparently reawakened for the Elwha River's wild steelhead. Studies show that the fish may have retained much of their genetic drive despite 100 years of being trapped behind dams. We continue our series 'Returning home: The Elwha's genetic legacy' with part two of seven. 

Our series 'Returning home: The Elwha's genetic legacy' continues with a look at the possible return of spring Chinook to the upper portions of the Elwha River. We bring you part three of seven.

New research suggests that recovery efforts are working for Puget Sound’s threatened yelloweye rockfish. Preliminary models show "considerable improvement" in population numbers.