Modeling

Many types and classes of models have been developed and applied to parts or all of the Salish Sea ecosystem including efforts to model impacts of climate change, assess the implications of alternative urban growth patterns and understand water circulation patterns and nutrient loading. Models in this case can refer to physical or mathematical representations of the ecosystem or components of the ecosystem including human impacts.

— Source: Puget Sound Science Review

Overview

It’s hard to overstate the importance of mathematical models to science. Models show how planets move and how diseases spread. They track the paths of hurricanes and the future of climate change. Models allow scientists to look at systems or scenarios that they could never view otherwise. Increasingly, mathematical models are also helping scientists understand Puget Sound. In this series of articles, we look at some of the ways that models are being used in ecosystem recovery efforts. We start with the basics. What are mathematical models and which types are most common?

Weather map of the northwestern United States.

Related Articles

Low dissolved oxygen levels put aquatic life in Puget Sound at risk – but not everywhere. A combination of careful monitoring efforts and powerful computer models are now enabling scientists to identify which areas of our regional waters are most prone to low oxygen levels, when, and why. This article is part of a series of reports funded by King County about the quest to define healthy oxygen levels in Puget Sound.

This article is the latest in a series about computer models and their uses within the Puget Sound ecosystem. Today, we look at the Salish Sea Model, one of several models in the region helping to predict water circulation, water quality and food-web relationships.

It’s hard to overstate the importance of mathematical models to science. Models show how planets move and how diseases spread. They track the paths of hurricanes and the future of climate change. Models allow scientists to look at systems or scenarios that they could never view otherwise. Increasingly, mathematical models are also helping scientists understand Puget Sound. In this series of articles, we look at some of the ways that models are being used in ecosystem recovery efforts. We start with the basics. What are mathematical models and which types are most common?

One of the first working models of Puget Sound was a scaled-down concrete reproduction, with actual water running through channels, around islands and into bays, inlets, and harbors. Motors, pumps and timing gears are part of an elaborate mechanism that replicates tides and river flows in the still-functioning model.

The skeletal beginnings of nearly all models is a conceptual understanding of the basic workings of the system being studied: Who are the important actors, and what are their roles within the system?

Many types of computer models are helping researchers study the health of Puget Sound. Bayesian network models are used to examine the probabilities that certain actions will take place within the ecosystem.