More info for the terms: competition, cover, density, fire exclusion, fresh, indehiscent, layering, litter, mutualism, natural, shrub, tree, wildfire
Breeding system: Most genetic diversity is harbored within populations; between-population diversity is low in whitebark pine. Gene flow is facilitated by wind dispersal of pollen and bird dispersal of seed [39,40,57]. Probably due to long-range movement of Clark's nutcrackers dispersing whitebark pine seeds over time, genetic diversity of whitebark pine is low compared to other North American pine species [39,40].
On a fine scale, genetic structure of whitebark pine consists of clusters of close relatives. As a consequence of Clark's nutcracker's habit of planting seeds from a parent tree in the same cache, individuals within clusters often cross- or self-pollinate. This results in inbreeding. Trees within clumps are usually related as half-siblings, full siblings, or selfed. Neighboring clumps (probably planted by a different bird and/or collected from a different parent tree) are not closely related to each other [61,127,208,213].
Seed production: Cone production requires 2 years, as is typical for pines (Pinus spp.). Cones are 1st produced at 20 to 30 years of age on good sites. Trees do not reach full cone production until 60 to 100 years of age on most sites [125,146]. Peak cone production extends for another 250 years, then gradually declines. Some 1,000-year-old trees still reproduce [207]. Cone production is characterized by frequent years of small cone crops and less frequent years of moderate to heavy crops [104]. In the Greater Yellowstone area, moderate or large whitebark pine conecrop years occurred 2 or 3 times a decade (1980-1990) [159]. Best reproduction occurs when day/night July temperatures are above 68/39 degrees Fahrenheit (20o/4o C), and there is no summer water stress [226].
Factors limiting reproduction: A number of agents reduce natural regeneration in whitebark pine. White pine blister rust, fire exclusion, bark beetles, animals, and fungal diseases reduce ability of mature trees to reproduce. White pine blister rust is the greatest threat to whitebark pine regeneration [28]. In blister rust-infected trees, branch die-off 1st occurs on the ends of large, cone-producing branches. Although tree mortality may not occur for decades, infected trees rapidly loose ability to produce seed [17]. By reducing the gene pool, genetic consequence of white pine blister rust is inbreeding depression (expression of maladaptive or lethal genes) [84,232]. However, other factors also contribute to poor regeneration and decline (see Other Management Considerations). Using historical stand reconstruction studies on the Bitterroot National Forest, Arno and others [18] determined that whitebark pine dominated 14% of the landscape in 1900. By the end of that century, combined effects of fire exclusion and white pine blister rust had reduced whitebark pine to the point that whitebark pine longer dominated any of the study sites. Remaining stands with cone-bearing whitebark pine were one-half their former size. Mountain pine beetle epidemics can depress whitebark pine regeneration for decades by killing mature, cone-bearing trees [23]. On the Sundance Burn in northern Idaho, scant whitebark pine regeneration has been attributed to mountain pine beetle attacks prior to large-scale wildfire coupled with blister rust damage to whitebark pines on the burn's periphery [210].
Animal seed predation on whitebark pine seed is high. Except following good conecrop years, whitebark pine seedling establishment is probably incidental due to high rates of seed predation [214,229]. Even Clark's nutcracker harvesting of whitebark pine seed, often presented as a classic example of animal-plant mutualism [204], may be detrimental on some sites. Although individual Clark's nutcrackers only remove seeds that they plant themselves [147], researchers fear that in areas of high blister rust infection, whitebark pine seed will become so rare that Clark's nutcrackers will consume most of the seed they cache, leaving few seed reserves for regeneration [215]. Clark's nutcrackers were the most efficient harvesters of whitebark pine seed on the Bridger-Teton National Forest of Wyoming, showing a 97% forage success rate (measured as time spent harvesting/seeds collected). Other important predators that harvested directly from whitebark pine cones included pine grosbeaks (92% success rate), ravens (79%), red squirrels (60%), and chipmunks (35%) [89]. Similarly, vertebrates harvested 100% of mature whitebark pine seeds on the slopes of Bachelor Butte in the Cascade Range of Oregon. Most successful seed collectors were Clark's nutcrackers, Douglas' squirrels, least chipmunks, and golden-mantled ground squirrels, respectively [134]. Mammalian and bird seed predation reduced the amount of soil-cached seed significantly (p<0.01) on the Gallatin National Forest of Montana. Northern pocket gophers were the most important seed predator [147].
Little is known of insect cone predators and their possible effects on whitebark pine regeneration. Further studies are needed in this area. Anderton and Jenkins [8] have documented whitebark pine seed predation by seed bugs (Leptoglossus occidentalis) and larch cone flies (Strobilomyia macalpinei) on the Bitterroot National Forest, Montana. Insect damage ranged from 0.4 to 7.1% of total seed crop in their study. A study across California, Oregon, Washington, Idaho, and Montana found that seed bugs were the most serious insect pest (27% of total whitebark pine seedcrop destroyed), with fir coneworms (Dioryctria abietivorella) damaging up to 13% of whitebark pine seeds [104].
Seed dispersal: Because cones are indehiscent, seed caching by Clark's nutcrackers is the only important means of dispersal [89]. Clark's nutcrackers break through the cone scales with their beaks to remove the seeds, then bury the seeds in shallow caches for use as future food [203,204]. Whitebark pine seedbeds are, therefore, almost entirely the choice of Clark's nutcrackers [144]. In good conecrop years, the birds cache many more seeds than they recover for food [204]. Hutchins and Lanner [89] estimated that 1 Clark's nutcracker caches 98,000 seeds in a good conecrop year. Many unretrieved seeds germinate and produce new trees [89,116,120]. The birds prefer burns and other open, disturbed areas as cache sites, although they also select closed, shady sites that are unfavorable for whitebark pine regeneration [203,204]. Norment and Conner [166] found that Clark's nutcrackers are most abundant on small (0.1- to 2-ha), disturbed patches or nonforested patches. Approximately 40% of caches on plots in the Sierra Nevada were on sites favorable for whitebark pine regeneration [204].
Germination: Germination and the 1st few weeks of seedling life may be the most critical stages of whitebark pine's life history. Seedlings do not emerge until (a) embryonic development has occurred and (b) the seedbed is moist [212]. Clark's nutcrackers often cache whitebark pine seeds before they are fully ripe and developed [117]. Embryonic development continues after planting and requires stratification and weathering of the seedcoat before germination occurs [124]. Germinants typically emerge 2 or more years after caching, when embryos are mature and seedbeds are moist long enough for seeds to fully imbibe (> 4 days under laboratory conditions) [124,208]. Some germination occurs in fresh seed the 1st growing season after caching. Germination of 1st-year, mature seed collected on the Bridge-Teton National Forest, Wyoming, ranged from 6.7 to 56.7% [89]. Above-average precipitation may favor emergence. On the Gallatin National Forest, seeds that were hand planted in 1988, a dry year, showed reduced 1st-year emergence compared to seeds planted in 1989, a moist year. Emergence is best on burned or other mineral soils compared to soils with litter [147]. Light-severity burns do not prepare as good a seedbed as more severe burns [147,225]. Because they are relatively free from competition, seedlings on burns have the best chance of growing into mature trees [145].
Seed banking: Whitebark pine appears to be the only North American pine (Pinaceae) with a seed bank. Due to seed caching by Clark's nutcrackers and delayed seed germination, whitebark pine may show good seedling establishment even if the previous year's cone crop was poor. Studies conducted after the 1988 fires on the Gallatin National Forest and Yellowstone National Park found that germination rates of natural regeneration were greatest 2 years after good cone crops. Some seeds germinated the spring after Clark's nutcracker planting, while others germinated in the 3rd (and last) year of the study. Synchronous germination occurred in both seedling clusters and single germinants. As of 1995, mean survivorship of seedling clusters > 1 year of age was 25%. The role of precipitation was unclear, but favorable precipitation was positively correlated (r=0.935) with good seedling establishment on the Yellowstone site [208]. Clark's nutcrackers have been observed caching seed as far as 13 miles (22 km) from parent trees [223]. They sometimes relocate cached seed to new sites [89], so actual dispersal distances may be greater. Longer travel distances may translate to fewer seedlings, however. Seedling density on the Sleeping Child Burn of western Montana decreased significantly (p > 0.05) as distance from seed source increased [199].
Seedling establishment and growth: Due to delayed germination and Clark's nutcracker caching habits, good seedling establishment requires many years. Clark's nutcrackers continue to cache seeds on burns and other disturbed sites as long as sites remain open and soils are bare. Burns where fire was exceptionally hot may not show good establishment for several postfire decades [11]. For example, the Sleeping Child and Saddle Mountain burns of western Montana 1st showed whitebark pine establishment 5 and 7 years after fire, respectively, with best establishment occurring 2 or more years after favorable summer rains promoted cone production [214].
Whitebark pine seedlings are generally considered hardy after their 1st few weeks of life [17,208]. Seedlings rapidly grow deep roots and thick, drought-resistant stems [40], enabling whitebark pine seedlings to better survive drought compared to their more sun-intolerant conifer associates. Even so, droughty, coarse-textured soils may reduce whitebark pine establishment. Light shade improves seedling survivorship; however, McCaughey [147] found that heavy shade increased drought-related seedling mortality on the Gallatin National Forest. He suggested that in dry years, increased cover might intercept critical precipitation. Shrub nurse plants may increase whitebark pine seedling survivorship, but herbaceous species with abundant fibrous roots appear to inhibit establishment. Based upon relative species abundance, whitebark pine seedlings on the Sleeping Child and Saddle Mountain burns were most frequently associated with grouse whortleberry, and seldom associated with smooth woodrush and beargrass (Xerophyllum tenax) [199,214].
Whitebark pine survivorship is generally considered best on burns [147]; however, given open conditions and mineral soil, seedlings may show good survivorship on a variety of sites. In Yellowstone National Park, whitebark pine seedlings showed best establishment on moist, moderately to severely burned sites compared to moist, unburned sites and dry burned/unburned sites. On the Gallatin National Forest, however, seedling establishment was similar on burned and unburned sites with similar moisture regimes [208].
Most seedlings gain rapid root growth, acquiring top-growth more slowly. First-year germinants on the Gallatin National Forest showed root lengths ranging from 2 to 7.1 inches (5-18 cm) [146]. In Yosemite National Park, mean top-growth rate of seedlings at 10,000 feet (3,050 m) elevation was 0.9 inch (2.3 cm)/year, while seedlings at 10,810 (3,295 m) gained an average 0.7 inch (1.7 cm) per year [204].
A number of agents may damage or kill seedlings. Heat damage to unshaded stem tissue is the common cause of death. Browsing animals also kill seedlings. Northern pocket gophers cause highest mortality on whitebark pine seedlings on the Gallatin National Forest, although browsing elk, chipmunks, and birds - including Clark's nutcrackers - also consume seedlings [146]. Tomback [204] found that 2 years after emergence, survivorship of natural whitebark pine regeneration on 2 Sierra Nevada sites averaged 41 and 65% of 1st-year cohorts.
Most growth occurs in mid-summer [87]. Growth on cold sites may be very slow [229], taking as long as 17 years to produce a 5-inch-long (12-cm) branch [197]. Tree-ring data from the central and southern Sierra Nevada show that best growth occurs following warm, wet winters, and slowest growth occurs after cool, dry winters [70].
Asexual regeneration: Whitebark pine reproduces by layering where long-lasting snowloads bend lower branches and thin, flexible stems onto soil. Layering is most common in krummholz whitebark pine [17,146]. Krummholz whitebark pine rarely sets seed and when it does, the seed often shows poor germination. Krummholz patches usually originate from lower-elevation seed transported into the upper subalpine by Clark's nutcrackers. Once krummholz is established, layering is its primary method of patch expansion [205]. Except in the upper subalpine, layering is not an important method of whitebark pine regeneration [17].