Algae

The algae are a polyphyletic and paraphyletic group of organisms. They are defined in differing ways, but are usually considered to be the photosynthetic organisms excepting plants. Using the term 'plants' in its most restrictive fashion, the algae are then photosynthetic organisms excepting the sister group to the Charales (i.e. the land plants). Such a definition allows inclusion of photosynthetic prokaryotes such as the cyanobacteria. The algae are the dominating primary producers in aquatic ecosystems, on unstable substrates (muds and sands) and in intertidal marine habitats. 

Source: Encyclopedia of Life

Overview

Formerly known as “Red Tide”, harmful algal blooms are a health concern for both wildlife and humans. The following is a brief review of some of these algae and their effects.

Due to the 'Red Tide' misnomer, blooms of red-colored algae, like this Noctiluca sp. (a dinoflagellate) seen here in Eastsound, Washington (July 2016), can cause undue public concern about harmful algal blooms. Photo: Jordan Cole

Related Articles

The Washington State Department of Ecology has reached one hundred Eyes Over Puget Sound reports. Since 2011, Ecology has provided aerial observations and documented visible features at the surface of Puget Sound from a floatplane. This unique perspective from the air featured Puget Sound's natural beauty, its oceanographic complexity, and its ecological treasures. It also raised awareness of the challenges that the water body is facing today. Our image-rich documentation of known eutrophication indicators ranges from algal and Noctiluca blooms to macroalgae, jellyfish, and human stressors. It provides a visually captivating time-capsule of issues facing Puget Sound. The report is rich in educational and outreach material, inspired numerous news reports, and drew academic and public attention during the period of marine heat wave of the north Pacific, The Blob.

The report comes after a third year of La Nina conditions. Weak upwelling off the coast and low river flows of major rivers meant less cold, nutrient-rich, upwelled water was being entrained into Puget Sound in late summer and fall. Water conditions in Puget Sound in October were generally expected while Willapa Bay and Grays Harbor were both unusually warm and salty. Smoky air restricted our flight to Southern Puget and Central Sound where we saw blooms in terminal bays as well as patches of jellyfish. Sediment in Commencement Bay and along shorelines in Totten Inlet was unusual for a dry fall. A healthy foodweb has at its base a balance of nutrients. Explore what we found over the period of two decades of monitoring.

How do excess nutrients trigger low oxygen conditions in Puget Sound and what do those conditions mean for the species that live here?

Diverse communities of microscopic organisms called phytoplankton make up the base of the aquatic food web. In that role, they are essential to the tiny animals that eat them, but phytoplankton are not dependent on others. Thanks to chlorophyl, these tiny organisms can generate their own energy from nutrients and sunlight. Despite their critical importance to a great diversity of sea life in Puget Sound, phytoplankton can also contribute to low-oxygen conditions, and some can be harmful in other ways.

In a new series we are calling Ask a Scientist we interview local researchers to get their thoughts on some of the important but lesser-known scientific facts about the Puget Sound ecosystem. Today, we speak with University of Washington oceanographer Parker MacCready about Puget Sound’s “underwater Amazon” and why it has profound implications for Puget Sound science and policy. It all begins, he says, with the mixing of fresh and salt water and something called the estuarine exchange flow.

Puget Sound Restoration Fund has launched a network to track declining kelp populations in the Salish Sea. The three-year initiative aims to support and standardize underwater monitoring to improve kelp conservation in the region.