Estuaries

An estuarine habitat occurs where salty water from the ocean mixes with freshwater from the land. The water is generally partially enclosed or cut off from the ocean, and may consist of channels, sloughs, and mud and sand flats. River mouths, lagoons, and bays often constitute estuarine habitat. Within any estuary, there is a salinity gradient that determines to a large extent what plants and animals are present. In Puget Sound, it is difficult to differentiate between marine habitat and estuarine habitat, since salinity fluctuates with the seasons and tides. The Department of Natural Resources established a geographical boundary in 1990, drawing a line from Green Point, on Fidalgo Island, to Lawrence Point, on Orcas, and calling all waters to the east estuarine habitat, and water to the west marine (with some exceptions: Dungeness Bay, Sequim Bay, and various coastal estuaries such as Grays Harbor and Willapa Bay).

Sources:

http://www.dnr.wa.gov/Publications/amp_nh_marine_class.pdf

http://www.ecy.wa.gov/programs/sea/shellfishcommittee/mtg_may08/Salmon_Recovery_Report.pdf

Overview

An estuary is a place where saltwater from the ocean mixes with freshwater from rivers and streams. Technically, this defines all of Puget Sound, but scientists have identified several types of "sub-estuaries" within the water body. These include pocket estuaries (or embayments), tidally-influenced rivers and wetlands and other areas near the shoreline connected with freshwater sources. This summary provides descriptions of these estuaries from the Washington State Department of Natural Resources, the Puget Sound Nearshore Partnership and others.  

Tidal marsh at the Nisqually National Wildlife Refuge in Puget Sound. Photo courtesy of USFWS.

Related Articles

For close to 100 years, Seattle's Ballard Locks has been one of the region's busiest waterways, drawing major boat traffic along with millions of tourists. But as it prepares to celebrate its centennial, the aged structure is also drawing the concern of engineers. They worry that an earthquake could cause the locks to fail, draining massive amounts of water from Lake Washington and Lake Union. In some scenarios, the two lakes could drop by as much as 20 feet, stranding boats, disabling bridges and causing big problems for salmon restoration.

This overview discusses the processes that control ocean and climate characteristics. Topics include atmospheric forcing, precipitation patterns, oscillation trends, coastal upwelling, and climate change.

This article describes the first known case of conjoined twins in a harbor seal. The case was documented in the Salish Sea region where harbor seals are often used as indicators of contaminant levels. However, researchers say their findings do not support that this anomaly was due to any common contaminants and hypothesize that the twinning was caused by disordered embryo migration and fusion. 

Runoff from rain and melting snow is one of the leading causes of pollution in Puget Sound. Here are selected facts related to stormwater, its prevalence, how it affects the Puget Sound ecosystem, and its environmental and economic impacts.

Chinook, coho and steelhead populations in Puget Sound have declined dramatically over the past 30 years. In some cases, counts of fish returning to the rivers are just a tenth what they were in the 1980s. While many possible causes of this decline are under consideration, some researchers are focusing on the combined effects of predators and disease. This article continues our coverage of the ecological impacts of disease in Puget Sound.

From orcas to starfish to humans, disease affects every living creature in the ecosystem. Scientists are increasingly alarmed by its potential to devastate already compromised populations of species in Puget Sound.