Eutrophication

Eutrophication of water bodies occurs when high levels of nutrients fuel high rates of primary production and accumulation of algal biomass, either as macroalgae or phytoplankton. Some ecosystems are naturally eutrophic, but in others human activity causes ecosystems to undergo transformations into a eutrophic state. This is termed cultural eutrophication, and is the primary concern in evaluating the status of marine waters of Puget Sound.

Source: Puget Sound Science Review

Related Articles

A 2019 paper in the Journal of Geophysical Research: Oceans outlines how the Salish Sea Model describes the impacts of climate change, sea level rise and nutrient loads on the region's nearshore environment.

As the region's population grows, scientists say we can expect to see increasing amounts of nitrogen and other elements flowing into Puget Sound. Known as “nutrients” these elements are naturally occurring and even necessary for life, but officials worry that nutrients from wastewater and other human sources are tipping the balance. That could mean big problems for fish and other marine life, gradually depleting the water of oxygen and altering the food web.

A regional sewage-treatment system in Thurston County has helped contain  low-oxygen problems in Budd Inlet as the population continues to grow. The system cleans up some of the effluent for replenishing groundwater supplies.

High amounts of elements such as nitrogen can cause blooms of phytoplankton that sometimes trigger perturbations throughout the food web. This occurs most often in the spring and summer after the long, dark, cloudy days of winter begin to fade.

The amount of oxygen in the Salish Sea is dependent on water circulation which distributes chemical elements such as nitrogen through the system.

Under the federal Clean Water Act, states are required to assess the quality of their surface waters and compile a list of polluted water bodies. The law mandates cleanup plans to address pollution and other water-quality problems. This article describes how this process works in Washington state for dissolved oxygen.