Topic: Eutrophication

All Stories

Topic: Eutrophication

Low dissolved oxygen levels put aquatic life in Puget Sound at risk – but not everywhere. A combination of careful monitoring efforts and powerful computer models are now enabling scientists to identify which areas of our regional waters are most prone to low oxygen levels, when, and why. This article is part of a series of reports funded by King County about the quest to define healthy oxygen levels in Puget Sound.

Oxygen is indisputably essential to aquatic life, but conflicts are brewing over water quality standards mandated in state regulations. This article is part of a series of reports funded by King County about the quest to define healthy oxygen levels in Puget Sound. By some estimates, those definitions could affect billions of dollars in state and local spending. [Editor's note: King County is currently in litigation with the Washington State Department of Ecology over the issue of dissolved oxygen water quality standards.]

The search goes on for a set of definitions and thresholds to represent low-oxygen concentrations that threaten various aquatic creatures. Over the years, ecologists have relocated, reshaped and revised the word “hypoxia” to describe these conditions. In part four of our series "Oxygen for life" we look at how scientists determine whether oxygen levels are low enough to be considered harmful to sea life. 

As observed in Hood Canal, low-oxygen conditions can upend the lives of Dungeness crabs trying to stay alive. Levels of dissolved oxygen can alter predator-prey relationships for a multitude of species, affecting populations throughout the food web. Part two of our series "Oxygen for life" examines a crab case study.

In time, lower dissolved oxygen worsened by climate change could increase the abundance of rare species in Puget Sound while putting populations of more common species into a tailspin. Part three of our series "Oxygen for life" looks at how warmer waters will gradually make it harder for many sea creatures to breathe. 

How do excess nutrients trigger low oxygen conditions in Puget Sound and what do those conditions mean for the species that live here?

As the region's population grows, scientists say we can expect to see increasing amounts of nitrogen and other elements flowing into Puget Sound. Known as “nutrients” these elements are naturally occurring and even necessary for life, but officials worry that nutrients from wastewater and other human sources are tipping the balance. That could mean big problems for fish and other marine life, gradually depleting the water of oxygen and altering the food web.

A regional sewage-treatment system in Thurston County has helped contain  low-oxygen problems in Budd Inlet as the population continues to grow. The system cleans up some of the effluent for replenishing groundwater supplies.

High amounts of elements such as nitrogen can cause blooms of phytoplankton that sometimes trigger perturbations throughout the food web. This occurs most often in the spring and summer after the long, dark, cloudy days of winter begin to fade.

The amount of oxygen in the Salish Sea is dependent on water circulation which distributes chemical elements such as nitrogen through the system.