Species: Oncorhynchus kisutch
Encyclopedia of Puget Sound
Numerous scales; one dorsal fin plus one adipose fin; no spines in fins; small black spots on back and upper lobe of tail fin; no dark pigment along gum line of lower jaw; gill rakers rough and widely spaced; lateral line nearly straight. In the ocean, coho salmon are dark metallic blue or greenish on the upper side, with silver sides and a whitish belly. During the spawning season, males are dusky green on the back and head, with red sides and a black belly; they develop a strongly hooked snout and large teeth. Spawning females have bronze to pink-red sides. Total length to around 108 cm.
Articles:



Longfellow Creek near West Seattle's industrial district still draws spawning salmon despite a century of city development and an onslaught of toxic chemicals. A current exhibit by photographer Tom Reese explores this often-overlooked gem of urban nature.

Restoration managers are hopeful that populations of coho, chum and pink salmon will rebound on the Elwha River as the fish take advantage of newly accessible habitat. Part five of our series 'Returning home' examines the importance of genetically distinct salmon runs.

Following dam removal, migratory salmon have been free to swim into the upper Elwha River for the first time in 100 years. Their actual behaviors and reproductive success may well be driven by changes in their genetic makeup. Our seven-part series 'Returning home' examines how the fish are doing and whether the Elwha's genetic legacy remains intact.

How can Puget Sound generate more salmon? That question has been at the center of ecosystem recovery efforts for decades. But even as scientists and conservationists make progress on many fronts — from breaching dams to cleaning up the water — they have faced one especially complicated and frustrating limitation: Salmon need more estuaries. We look at how local tribes are working to restore this critical habitat.

Warming waters threaten the recovery of salmon in Puget Sound. New findings about stream temperature could help salmon survive the threats of climate change.

The search for why large numbers of spawning coho salmon have been dying in Puget Sound's urban streams goes as far back as the 1980s and culminated this year with the discovery of a previously unidentified chemical related to automobile tires. We offer a detailed timeline for the discovery.

Environmental engineers and chemists at the University of Washington Tacoma have identified a mysterious compound implicated in the deaths of large numbers of coho salmon in Puget Sound. The chemical is linked with a rubber additive commonly used in tires and is thought to kill more than half of the spawning coho that enter the region's urban streams every year.

Modern automobile tires are a complex mixture of chemicals, all used together in different ways to give tires their structure and properties, including riding comfort, safety and long life. Chemicals from tire wear particles are now thought to be responsible for the deaths of large numbers of coho salmon returning to spawn in Puget Sound streams.

Many creeks and waterbodies in Puget Sound may look pristine, but most face serious threats from stormwater pollution. A new study at Soos Creek shows how mud-dwelling bugs, traditional chemistry and digital "heatmaps" can be used to track stormwater impacts and identify the most polluted areas. Scientists and planners hope that this may one day lower the price tag on costly stormwater fixes.

Last summer, scientists met at the University of Washington to address alarming findings concerning the rapid acidification of the world's oceans. Experts at that symposium warned that wildlife in the Salish Sea, from salmon to shellfish, may start to see significant effects from changing water chemistry within the next 10 to 20 years. This article summarizes the symposium's key findings and was commissioned and edited by the Washington Ocean Acidification Center which hosted the gathering. Funds for the article were provided by the Washington state legislature. [A version of this article was originally published by the Washington Ocean Acidification Center.]

Can scientists bring back the lost tidal forests of Puget Sound? It could take generations, but restoring this rare habitat will pay big dividends for Puget Sound’s salmon.

Chemicals, disease and other stressors can increase a salmon's chance of being eaten or reduce its ability to catch food. We wrap up our series on the Salish Sea Marine Survival Project with a look at some of the lesser-known, but still significant factors contributing to salmon declines in the Salish Sea.

An intensive research program in the U.S. and Canada is studying why so few salmon in the Salish Sea are returning home to spawn. They are uncovering a complex web of problems involving predators, prey and other factors that put salmon at risk as they migrate to the ocean. We begin a four-part series on the Salish Sea Marine Survival Project, including new findings presented at the 2018 Salish Sea Ecosystem Conference last spring in Seattle.

Researchers are trying to determine which chemicals in stormwater are contributing to the deaths of large numbers of coho salmon in Puget Sound. It has prompted a larger question: What exactly is in stormwater, anyway?

In recent decades, hundreds of millions of dollars have been spent to restore habitat for Puget Sound salmon. In this article, we look at how scientists are gauging their progress. Are environmental conditions improving or getting worse? The answer may depend on where you look and who you ask.

A biennial report produced by the Governor's Salmon Recovery Office provides stories and data about salmon, habitat, and salmon recovery in Washington, including Puget Sound.

Drugs like Prozac and cocaine have been showing up in the region’s salmon. But these are just some of the potentially thousands of different man-made chemicals that escape into the Salish Sea every day, from pharmaceuticals to industrial compounds. Now the race is on to identify which ones pose the greatest dangers.

The Salish Sea Marine Survival Project has mobilized dozens of organizations in the U.S. and Canada to find an answer to one of the region's greatest mysteries. What is killing so many young salmon before they can return home to spawn? A series of talks at the 2016 Salish Sea Ecosystem Conference brought together some of the latest research.

Chinook, coho and sockeye salmon, along with steelhead trout, live in the Lake Washington watershed and navigate a treacherous route through the Ballard Locks on their way to Puget Sound.

Chinook, coho and steelhead populations in Puget Sound have declined dramatically over the past 30 years. In some cases, counts of fish returning to the rivers are just a tenth what they were in the 1980s. While many possible causes of this decline are under consideration, some researchers are focusing on the combined effects of predators and disease. This article continues our coverage of the ecological impacts of disease in Puget Sound.

This report documents how Washingtonians have responded to the challenges of protecting and restoring salmon and steelhead to healthy status. It also serves as a tool to summarize achievements, track salmon recovery progress through common indicators, and identify data gaps that need to be filled.

Salmon recovery demands both dedication among people with different interests, and sustained resources. This biennial report tells the story of the progress made to date and the challenges ahead.

This is the Puget Sound Water Quality Action Team's third report on key indicators of Puget Sound's Health. We prepared the report in response to the Washington State Legislature's request to evaluate efforts to protect Puget Sound. The report includes updated information on the 17 indicators presented in 2000 as well as information on two new indicators.

Scientists say low marine survival rates threaten Puget Sound coho salmon populations. A 2015 article in the journal Marine and Coastal Fisheries reports that wild cohos in the Salish Sea had higher smolt survival rates over a 30 year period than hatchery coho salmon. Smolt survival in the Strait of Georgia during that time declined faster than it did in Puget Sound.

A 2015 article published in the Marine Ecology Progress Series identifies intraspecific differences in diet between harbor seals in the Salish Sea, suggesting implications for marine reserve management.

New research presented at the 2014 Salish Sea Ecosystem Conference shows that some of the greatest dangers to Puget Sound marine life come from our common, everyday activities. These pervasive sources of pollution are so woven into our lives that they are almost invisible to us, but it’s becoming impossible to ignore their effects.

The growth and survival of young salmon in streams, river deltas and floodplains are seen as crucial pieces of the salmon recovery puzzle. In part two of this two-part series, researchers at the Salish Sea Ecosystem Conference in Seattle say the complexities of the salmon life cycle require new coordination among scientists.

Scientists say Puget Sound’s salmon are dying young and point to low growth rates in the marine environment as a possible cause. In part one of this two-part series, scientists consider threats facing young salmon in the open waters of Puget Sound.

Lead Entities are local organizations in Puget Sound that develop salmon recovery strategies and priorities for the region on a watershed-based scale.

This technical report produced for the Puget Sound Nearshore Partnership on Valued Ecosystem Components (VEC) summarizes existing knowledge of salmon use of nearshore habitats in order to help protect and restore these habitats.


Classification
Actinopterygii
Salmoniformes
Salmonidae
Oncorhynchus
NatureServe
Classification
Ecology and Life History
Numerous scales; one dorsal fin plus one adipose fin; no spines in fins; small black spots on back and upper lobe of tail fin; no dark pigment along gum line of lower jaw; gill rakers rough and widely spaced; lateral line nearly straight. In the ocean, coho salmon are dark metallic blue or greenish on the upper side, with silver sides and a whitish belly. During the spawning season, males are dusky green on the back and head, with red sides and a black belly; they develop a strongly hooked snout and large teeth. Spawning females have bronze to pink-red sides. Total length to around 108 cm.